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Generative AI is Powerful
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Text Generation Image/Video Generation Action Generation

 We are living in an era of rapid progress in Generative AI
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 We are living in an era of rapid progress in Generative AI

Index, Artificial Intelligence. "Artificial intelligence index report 2025." (2025).



But they are also Expensive
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Expensive Training
◦ BERT-Base (110 M) can be pre-trained 

on your laptop for hours.
◦ LLaMA-7B (7 B) can be trained with a 

small multi-GPU rig in a couple of days.
◦ Turing NLG (17 B); you will need a mid-

scale GPU pod for several days.
◦ GPT-3 (175 B); you will need thousands 

of GPUs and weeks of wall-clock time.



Challenge 1: Memory Gap
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 Model Size and Memory Grow Rapidly According to Scaling Laws. 
Inference VRAM vs. Model Size Training VRAM vs. Model Size



Challenge 1: Memory Gap 
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 Hardware memory has struggled to catch up with modern AI models

◦ The number of parameters in large 
Transformer models has been 
growing exponentially by a factor of 
410× every two years

◦ The single GPU memory has only 
been scaled at a rate of 2× every 2 
years. 

Gholami, Amir, et al. "AI and memory wall." IEEE Micro (2024)



Challenge 2: Computation Gap

Center of Computational Evolutionary Intelligence (CEI) 8

 Advanced hardware is not able to catch up fast enough.
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Synapses vs. Silicon
 Biological Brain: A ~20-watt system of ~10¹⁵ 
synapses enabling continuous, associative, and 
efficient lifelong learning.

 Silicon Brain: AI progress is throttled by the 
Memory Wall, where data movement energy 
cost now dwarfs that of computation.

 The next architectural leap requires learning 
from biology's algorithmic primitives to re-
architect AI computing and memory systems.
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Data from Drachman, D. A. (2005). Do we have brain to spare? Neurology, 64(12). / Sterling, P., & Laughlin, S. 
(2015). Principles of Neural Design. MIT Press.
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Engineering Episodic 
Intelligence (HippoMM)
How can we build systems that don't just process data, but remember experiences?



The Challenge of Understanding Long Multimodal Events
 Humans: Effortlessly segment and form associative memories from 
continuous audiovisual experiences.

 State-of-the-Art AI: Struggles with temporal integration and cross-modal 
recall from long-form events.
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From Messy Streams to Coherent Episodes
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 Temporal Pattern Separation
◦ Mimic the hippocampus’s ability to segment continuous experience into discrete events.
◦ Employs content-adaptive segmentation, which is more semantically coherent than fixed-duration 

chunking. It uses SSIM to detect visual changes and audio energy to detect silence.

Visual Input Auditory Input

𝒮𝒮𝑡𝑡 = �
𝑚𝑚∈{𝑣𝑣,𝑎𝑎}

1 [𝑑𝑑𝑚𝑚(Input𝑚𝑚(𝑡𝑡), Input𝑚𝑚(𝑡𝑡 − 1)) > 𝜏𝜏𝑚𝑚]



Consolidation & Semantic Replay
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 Temporal Pattern Separation

 Perceptual Encoding
◦ Transform raw input into rich, multimodal representations, mirroring the entorhinal cortex's role.
◦ A tripartite strategy processes visual, auditory, and cross-modal features. We use pre-trained models 

like ImageBind for embeddings and Whisper for transcriptions to form a detailed “Short Term Memory” 
object for each segment.

Visual Input Auditory Input

Cross-Modal Features

Video Features

Audio Features



From Detailed Traces to Semantic Gist
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 Memory Consolidation
◦ To reduce redundancy and interference by filtering similar consecutive memory segments, inspired by 

biological memory stabilization.
◦ A filtering mechanism based on semantic similarity is used. 

Short Term
Memory

Consolidated 
Memory



From Detailed Traces to Semantic Gist

15

 Memory Consolidation

 Semantic Replay
◦ Transform detailed, consolidated short-term memories into efficient long-term representations.
◦ An LLM “replays” the essence of each consolidated memory segment to generate a high-level textual 

summary or “gist”. This summary becomes the core of a ThetaEvent object, the system's abstract 
long-term memory format.

Short Term Memory Consolidated 
Memory

Semantic
Summary

Feature
Summary

+



Query and Cross-Modal Recall
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 Retrieval begins by classifying the query's modality focus (e.g., Visual, Auditory, 
Semantic) to select the optimal retrieval pathway.
 The system first attempts a highly efficient Fast Retrieval on the abstract, 
semantic “ThetaEvent” summaries.
 Only if confidence from the fast path is below a threshold does the system 
invoke a Detailed Recall on the richer, consolidated Short-Term Memory objects.
 A final LLM-based module synthesizes the retrieved evidence into a coherent 
answer.



Performance and Impact of HippoMM
 HippoMM achieves 14% higher accuracy while delivering responses 5×
faster than state-of-the-art method. PT: Processing Time; ART: Average Response Time; A+V: 
Cross-modal (Audio+Visual) accuracy; A: Audio-only accuracy; V: Visual-only accuracy; S: Semantic understanding 
accuracy, DR: Detailed Recall, FR: Fast Retrieval; AR: Adaptive Reasoning.

17



Lessons Learned and The Path Forward
Key Findings
• Validated the Approach: Proved that translating neuroscientific memory principles 
into computational architectures is a viable and effective strategy.

• Set a New State-of-the-Art: Significantly outperformed existing methods in both 
accuracy and speed on a challenging audio-visual retrieval task.

The Path Forward
• Encoding Efficiency: How can we more intelligently select what information is 
encoded to begin with?

• Memory Scalability: How do we consolidate and compress memories to manage 
massive, long-term knowledge bases?

• Retrieval Speed: How can we accelerate search to find the right memory in near-
instant time?

18
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Encode: Sculpting What 
Enters the Memory
How can we more intelligently select what information is encoded to begin with?



KVTP: Keyframe Oriented Video Token Pruning 

 Large number of vision tokens is the 
main bottleneck for efficient VLM, 
resulting in large memory overhead which 
cannot be afforded by edge devices

 High spatial and temporal redundancy 
exist in long-form videos, vision tokens 
can be pruned without sacrificing 
performance

 Too many fames, but not all frames are 
equally important or relevant for 
answering the queries in one video

20

VLM: Vision Language Model



Comparing with existing works

 Hard frame selection: only preserve 
keyframes and discard all other frames, 
breaking the temporal and context 
connections

 Unconditioned token pruning: Treat every 
frame equally and assign same pruning rate, 
causing significant information loss in 
keyframe.

 KVTP: Introducing adaptive pruning rates 
oriented by frame importance, keeping 
context connections while preserving more 
information from keyframes.
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A qualitative result showing the difference between 
our approach and existing approaches (Hard frame 
selection and Unconditioned token pruning)

KVTP: Keyframe Oriented Video Token Pruning



A learnable plug-in-and-play keyframe predictor module
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Experiment results
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 KVTP reduces visual token usage by 80% for long-video processing with no 
compromise in model performance.
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Consolidate: Entropy-
Driven Compression
How do we consolidate memories to manage massive, long-term knowledge bases?



Ecco Algorithm Design
 Stage 1 (Steps 1,2,3,4) – Pattern Discovery (Hierarchical K-Means)

◦ K-Means per 128-weight chunk ⇒ local centroids
◦ Cluster those centroid vectors again ⇒ S global K-means patterns → pattern map

 Stage 2 (Steps 5,6,7,8,9)– Pattern-Aware Compression
◦ Quantize each chunk with suitable shared K-means patterns 
◦ Entropy-code centroid indices using pattern-specific frequencies (H huffman codebooks)

29



Ecco System Design

 Decompressor is placed between the SMs and the L2 cache 

 Compressor is positioned between the L2 cache and the HBM

30

 Mixed SW & HW control
◦ Explicitly declare compression 

properties in 
CUmemAllocationProp

◦ TLBs are augmented with 
additional bits indicating

◦ Compressed/Uncompressed

◦ Compression ratio (2x/4x) 



Evaluation
 Accuracy (Perplexity) 
 Normalized latency

◦ (a) Across batch sizes: 1, 2, 4, 8, 16, 32, 64
◦ (b) Across sequence lengths: 128, 256, 512, 1k, 2k, 4k
◦ (c) Across various models: 7B, 13B, 30B, 65B, 70B

 Achieves an up to 2.9× and 1.9× speedup over the SOTA AWQ and SmoothQuant
framework, 2.4× over the Olive accelerator
 Increases memory capacity by nearly 4× and maintaining SOTA LLM accuracy. 

31
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Recall: In-Memory 
Search at Fast Speed
How can we accelerate search to find the right memory in near-instant time?



Background - ANNS
 Graph-traversal-based ANNS

◦ Construction phase: building the graph
◦ Search phase: search targets on the constructed graph

◦ Breadth-first traversal search + specialized conditions

33

• Three basic kernels
• Graph-traversal

• 𝑣𝑣1 → 𝑣𝑣2, 𝑣𝑣3, 𝑣𝑣5 →
𝑣𝑣4, 𝑣𝑣6, 𝑣𝑣8, 𝑣𝑣11 → …

• Termination condition
• Distance Computation

• Angular/Euclidean Distance
• Candidate list

• Sorting
• Top-k nearest neighbors



Background – ANNS Applications
 Retrieval augmented generation (for LLM)

34

Definition:
RAG takes input and retrieves a set of 
relevant/supporting documents given 
a source (e.g., Wikipedia). The 
documents are concatenated as 
context with the original input prompt 
and fed to the text generator which 
produces the final output.

Figure source: https://www.databricks.com/glossary/retrieval-augmented-generation-rag



Motivation – Some Profiling Results
 SSD I/O overhead

◦ Running HNSW and DiskANN on the graphs constructed on 3 datasets

◦ Why?
◦ Graph too large (> 500GB)  redundantly/frequently fetch partitioned graphs from SSD
◦ Limited SSD I/O bandwidth

36



Design – In-Storage Computing Principle
 Make queries swim upstream and filter the stream from storage
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Design – Hardware Architecture
 Overall NDSearch architecture

◦ SearchSSD: Graph-traversal + Distance Computation
◦ FPGA: Sorting (Bitonic Sorting) 

38

PCIe 
Switch

Host

result 
lists

FPG
A

SSD

DRAM

LUNCSR
Array

Query 
Property 
Table

Embedded Cores

Allocator

Vgenerator

Flash
CTR SiN SiN SiN SiN

In
te

rn
al

 B
us

②

③

④

⑤

①

Flash
CTR SiN SiN SiN SiN

Flash
CTR SiN SiN SiN SiN

Flash
CTR SiN SiN SiN SiNSearSSD



Evaluation
 Main Results
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Speedup normalized to CPU (shown in the histogram) and throughput (shown in the line chart) comparison on various platforms. We measure 
the throughput by processing a batch (2048) of queries with the same memory trace on each benchmark.

NDSearch can improve the throughput by up to 31.7×, 14.6×, 7.4×, 2.9× over CPU, GPU, a state-
of-the-art SmartSSD design and DeepStore, respectively.



Our Takeaways
 AI will proactively retrieve information using contextual cues, before 
being querized.

 AI systems will strategically “forget” redundant data, keeping only 
essential patterns like biological memory.

 New architectures will merge memory and processing, eliminating 
many exiting computing bottlenecks.

41



Q&A
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