iire i
I
|

£
i

S i 5l

IS8 b kel g ]

===

Towards Efficient Generative Al: Software/Hardware Co-
Design for the Next Generation of Intelligent Systems

Yiran Chen

Department of Electrical and Computer Engineering, Duke University

Duke University Center for Computational Evolutionary Intelligence (CEl)

NSF IUCRC For Alternative Sustainable and Intelligence Computing (ASIC)

NSF Al Institute for Edge Computing Leveraging Next-generation Networks (Athena) Duke



Generative Al is Powerful

e We are living in an era of rapid progress in Generative Al

Text Generation Image/Video Generation Action Generation
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Generative Al is Powerful

e We are living in an era of rapid progress in Generative Al

Performance of top models on LMSYS Chatbot Arena by select providers

Source: LMSYS, 2025 | Chart: 2025 Al Index report
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But they are also Expensive

E X p ens ive Tra i N i N g Cost of training compute for notable ML systems

. Cost in USD (log scale, inflation-adjusted) 90% Cl in regression mean
> BERT-Base (110 M) can be pre-trained ; ’ :
on your laptop for hours. o

LLaMA-7B (7 B) can be trained with a oK
small multi-GPU rig in a couple of days. .

Turing NLG (17 B); you will need a mid-  *
scale GPU pod for several days. )

GPT-3 (175 B); you will need thousands
Of GPUS and Weeks Of WaII_CIOCk time' 2009 2010 201 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023

Publication date of ML system
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Challenge 1: Memory Gap

e Model Size and Memory Grow Rapidly According to Scaling Laws.

Inference VRAM vs. Model Size Training VRAM vs. Model Size

LLaMA 65B LLaMA 65B

[

o
W
L

AnimateDiff Baseline LLaMA 13B

LLaMA 13B
><LLaMA 7B
xStable Cascade

><LLaMA 7B
X <AnimateDiff Streamlined

xStable Diffusion XL

[

o
N
L

><Stable Diffusion 1.5

m
&
i}
a
b}
=
o)
-
=
o
Q
o
%
>
o
O
o
]
—_
3
=

Training VRAM Requirement (GB)

BLIP-2 OPT 2.7B

100 10! 10!
Model Parameters (Billions) Model Parameters (Billions)

Center of Computational Evolutionary Intelligence (CEl)



Challenge 1: Memory Gap

e Hardware memory has struggled to catch up with modern Al models

Al and Memory Wall

10TB Baidu RecSys

o The number of parametersin large  *™: .

<
I
Transformer Size: 410x /2 yrs A

] Switch Transformer |
Transformer models has been oo ATHW Memory: 2x/2 yrs ot ® sommnnbe
growing exponentially by a factor of ] :

410 X every two years

GPT-3

T °
100

Microsoft T-NLG
A100-80 (80GB) H\00 (3pGB)
MegatronLM @ PY N
10~ V100 (32GB) TPUV3 (32GB) ® ° N
3 . .
P100 (12GB) ° SPT.2 A100 (40GB)

TPUV2 (16GB) ®

Parameter Count (Billion)

BERT

The single GPU memory has only

been scaled at a rate of 2 X every 2
.1 Transformer @
ye a rS ° ; ResNet.’:J Den.seNet e

0.01

2006 207 2018 20'1$E;\R 2020 2021 2022
Gholami, Amir, et al. "Al and memory wall." IEEE Micro (2024)
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Challenge 2: Computation Gap

e Advanced hardware is not able to catch up fast enough.
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Synapses vs. Silicon

e Biological Brain: A ~20-watt system of ~10"
synapses enabling continuous, associative, and
efficient lifelong learning.

e Silicon Brain: Al progress is throttled by the
Memory Wall, where data movement energy
cost now dwarfs that of computation.

e The next architectural leap requires learning
from biology's algorithmic primitives to re-
architect Al computing and memory systemes.
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Engineering Episodic

Intelligence (Hlppol\/ll\/l)

How can we build systems that don't just process data, but remember exper




The Challenge of Understanding Long Multimodal Events

e Humans: Effortlessly segment and form associative memories from
continuous audiovisual experiences.

e State-of-the-Art Al: Struggles with temporal integration and cross-modal
recall from long-form events.

Dentate Gyrus
YUSS

Visual Stream CA?

CA1

Entorhinal
Cortex

Auditory Stream




From Messy Streams to Coherent Episodes

o Temporal Pattern Separation
o Mimic the hippocampus’s ability to segment continuous experience into discrete events.

o Employs content-adaptive segmentation, which is more semantically coherent than fixed-duration
chunking. It uses SSIM to detect visual changes and audio energy to detect silence.

Visual Input Auditory Input
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Consolidation & Semantic Replay

e Temporal Pattern Separation

e Perceptual Encoding
o Transform raw input into rich, multimodal representations, mirroring the entorhinal cortex's role.

o A tripartite strategy processes visual, auditory, and cross-modal features. We use pre-trained models
like ImageBind for embeddings and Whisper for transcriptions to form a detailed “Short Term Memory”
object for each segment.

Video Features

Visual Input  Auditory Input (T T Il U711 |
- [ ) Audio Features

Cross-Modal Features
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From Detailed Traces to Semantic Gist

e Memory Consolidation

> To reduce redundancy and interference by filtering similar consecutive memory segments, inspired by
biological memory stabilization.

o A filtering mechanism based on semantic similarity is used.

Short Term Consolidated
Memory Memory

00000000000
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From Detailed Traces to Semantic Gist

e Memory Consolidation

e Semantic Replay
o Transform detailed, consolidated short-term memories into efficient long-term representations.

o An LLM “replays” the essence of each consolidated memory segment to generate a high-level textual
summary or “gist”. This summary becomes the core of a ThetaEvent object, the system's abstract
long-term memory format.

Consolidated Feature Semantic
Memory Summary Summary

00000000 (Oom [ 00000
ooooooon \opg)— (LU0,

Short Term Memory




Query and Cross-Modal Recall

e Retrieval begins by classifyin% the query's modality focus (e.g., Visual, Auditory,
Semantic) to select the optima '

retrieval pathway.

e The system first attempts a highly efficient Fast Retrieval on the abstract,
semantic " ThetaEvent™ summaries.

e Only if confidence from the fast path is below a threshold does the system
invoke a Detailed Recall on the richer, consolidated Short-Term Memory objects.

e A final LLM-based module synthesizes the retrieved evidence into a coherent
answetr.

Semantic Search on 'Gist'

High-Confidence Answer

Fast Retrieval (69% of cases)

Detailed Recall High-Accuracy Answer

Feature Search on Details Duke
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Performance and Impact of HippoMM

e HippoMM achieves 14% higher accuracy while delivering responses 5 X
faster than state-of-the-art method. rr Processing Time; ART: Average Response Time; A+V:

Cross-modal (Audio+Visual) accuracy; A: Audio-only accuracy; V: Visual-only accuracy; S: Semantic understanding
accuracy, DR: Detailed Recall, FR: Fast Retrieval; AR: Adaptive Reasoning.

Modality Performance
A+VT A1 V1 S 1

Method PT| ART] Avg. Acc. T

Prior Methods

NotebookLM - 28.40% 23.20% 28.00% 26.80% 26.60%
Video RAG 112.5s 63.6% 67.2% 41.2%  84.83% 64.2%

Ablation Studies

HippoMM w/o DR, AR 4.14s 66.8% 73.2% 60.4% 90.0% 72.6%
HippoMM w/o FR, AR 27.3s 72.0% 80.0% 66.8% 83.2% 75.5%
HippoMM w/o AR 11.2s 68.8% 80.8% 65.6% 92.0% 76.8%

HippoMM (Ours) 20.4s 70.8% 81.6% 66.8% 93.6% 78.2%




Lessons Learned and The Path Forward
Key Findings

Validated the Approach: Proved that translatintg neuroscientific memory principles
into computational architectures is a viable and effective strategy.

Set a New State-of-the-Art: Significantly outperformed existing methods in both
accuracy and speed on a challenging audio-visual retrieval task.

The Path Forward

Encoding Efficiency: How can we more intelligently select what information is
encoded to begin with?

Memory Scalability: How do we consolidate and compress memories to manage
massive, long-term knowledge bases?

Retrieval Speed: How can we accelerate search to find the right memory in near-
instant time?

Duke
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Encode: Sculpting What

Enters the Memory

How can we more intelligently select what information is encoded to begin with?

Duke
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KVTP: Keyframe Oriented Video Token Pruning

Frame 7 Frame 15 Frame 23 Frame 31

&

Frame 63
o ST
p:*‘: '.'1\.
L g
1:3
e

All frame required

What is the genre of this video?

Keyframe required

When demonstrating the Germany modern Christmas tree is initially decorated with
apples, candles and berries, which kind of the decoration has the largest number?

How many red socks are there on the fireplace?

e Large number of vision tokens is the
main bottleneck for efficient VLM,
resulting in large memory overhead which
cannot be afforded by edge devices

e High spatial and temporal redundancy
exist in long-form videos, vision tokens
can be pruned without sacrificing
performance

e Too many fames, but not all frames are
equally important or relevant for
answering the queries in one video

Duke
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Comparing with existing works

What can you say about the temperature of the water being poured?
s A. No water was poured. B. The water seems hot. C. The water seems cold.

Hard frame

selection _ ' X

Unconditioned | |,
token pruning A 1 BB x

B. The water seems hot.

T S| - | | .
" .";"I ':h.‘ = ﬁ"l_.. ‘ ﬁ T V
A qualitative result showing the difference between
our approach and existing approaches (Hard frame

selection and Unconditioned token pruning)

C. The water seems cold.

A. No water was poured.

e Hard frame selection: only preserve
keyframes and discard all other frames,
breaking the temporal and context
connections

e Unconditioned token pruning: Treat every
frame equally and assign same pruning rate,
causing significant information loss in
keyframe.

e KVTP: Introducing adaptive pruning rates
oriented by frame importance, keeping
context connections while preserving more
information from keyframes.
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A learnable plug-in-and-play keyframe predictor module

-

‘ token pruning J‘

I

{ vision encoder ‘ [ text processor ] key frame predictor
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context fusion
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vision encoder

text embedding
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text encoder
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Experiment results

e KVTP reduces visual token usage by 80% for long-video processing with no
compromise in model performance.

Table 2. Performance comparison of all pipelines on LLaVA-Video-TB. Table 3. Performance comparison of all pipelines on LLaVA-Video-72B.

Method FLOPs VideoMME EgoSchema NextQA Method FLOPs VideoMME EgoSchema NextQA
LLaVA-Video-7TB x100% 62.63 5417 T8.51 LLaVA-Video 72B x100% 69.52 65.76 83.20
Random Sampling x28% 58.28 50.69 75.20 Random Sampling x21% 62.37 60.47 78.93
ToMe x30% 58.90 51.45 72.19 ToMe x21% 62.89 61.22 76.45
PruMerge x28% 59.77 52.49 75.58 PruMerge x21% 64.52 63.11 80.74
KeyVideoLLM x36% 51.32 46.78 641.33 KeyVideoLLM x23% 60.49 55.23 76.45
FastV x64% 61.79 52.42 77.89 FastV xH6% 66.25 63.56 80.34
Random Sampling + Ours x36% 60.16 52.73 76.50 Random Sampling + Ours x23% 64.32 62.19 80.12
ToMe + Ours x38% 62.36 53.24 75.88 ToMe + Ours x23% 65.77 63.61 79.51
PruMerge + Ours x36% 63.29 54.71 76.76 PruMerge + Ours x23% 67.34 64.12 81.21

Table 4. Comparison of Different Methods for Assigning Adaptive Pruning Rates.

Method # of Trained Parameters VideoMME NextQA EgoSchema
GPT Assigned 0 62.83 75.96 53.33
KeyVideoLLM 7.88B 61.23 75.80 51.91

KVTP 0.88B 63.29 76.76 54.71 D k
LLKC
24




Consolidate: Entropy-

Driven Compression

How do we consolidate memories to manage massive, long-term knowledge bases?

Duke
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Ecco Algorithm Design

e Stage 1 (Steps 1,2,3,4) — Pattern Discovery (Hierarchical K-Means)

o K-Means per 128-weight chunk = local centroids

o Cluster those centroid vectors again = S global K-means patterns - pattern map

Stage 2 (Steps 5,6,7,8,9)— Pattern-Aware Compression

o Quantize each chunk with suitable shared K-means patterns

o Entropy-code centroid indices using pattern-specific frequencies (H huffman codebooks)

@ Reshape

© Paddin
s O Huffman - & ®

coding lippi
“ clipping

D K-means Pattern #1

D K-means Pattern #2

D Huffman Codebook

e— 15 —

Quantization - D Padded Outliers
codebook o 1 2 3

Mapping

@ Get Huffman codebook based on Statistical Frequency gsf: Group Scale factor
(Higher frequency -> Shorter bits)




Ecco System Design

® Mixed SW & HW control

o Explicitly declare compression
properties in
CUmemAllocationProp

Streaming Multiprocessors

Streaming Multiprocessors .| Compressor
(SMs) 2x/4x

o TLBs are augmented with
additional bits indicating

L2 Cache '

Parallel
Decompressor

Register File

1
|
>
|
|
|
|
|
|
|
|
|
|

o Compressed/Uncompressed

o Compression ratio (2x/4x)

Uncompressed Data Compressed Data Proposed HW GPU HW

Decompressor is placed between the SMs and the L2 cache

Compressor is positioned between the L2 cache and the HBM

Duke
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Evaluation

Table 1: Perplexity Comparison of Models Under Different Configurations on WikiText-2 with 2048 Sequence Length.

® Accuracy (Perplexity) Fepioy i iz i

Bits Method LLaMA-7B LLaMA-13B LLaMA-30B LLaMA-2-7B LLaMA-2-13B  LLaMA-2-70B Mistral-7B

FP16 - 5.68 5.09 4.10 5.47 4.88 3.32 5.25

e Normalized latency TR

W4A16 Olive 6.04 4.32 5.81 5.10 5.51

. g128 AWQ 5.78 4.21 5.60 4.97 5.37
o (a) Across batch sizes: 1, 2, 4, 8, 16, 32, 64 Beco 580 120 53 197 5.36

RTIN 6.23 4.56 5.99 5.19 5.59
AWQ 5.93 4.39 5.83 5.12 5.50

o (b) Across sequence lengths: 128, 256, 512, 1k, 2k, 4k wasc quis 531 0 s 506 53
o (c) Across various models: 7B, 13B, 30B, 65B, 70B

® Achieves an up to 2.9X and 1.9 X speedup over the SOTA AWQ and SmoothQuant
framework, 2.4 X over the Olive accelerator

KW Projection  mmm  Atten

3.0

[~ v

® Increases memory capacity by ining SOTA LLM accuracy.

B5=16 BS=32 B5=64 Seq=128 Seq=256 Seq=1K Seq=2K Seq=4K

(a) Normalized latency vs. batch sizes on LLaMA-13B. (b) Normalized latency vs. sequence lengths on LLaMA-13B.




Recall: In-Memory

Search at Fast Speed

How can we accelerate search to find the right memory in near-instant time?




Background - ANNS

e Graph-traversal-based ANNS
o Construction phase: building the graph

o Search phase: search targets on the constructed graph

o Breadth-first traversal search + specialized conditions

* Three basic kernels
«—  pathto search * Graph-traversal

the nearest neighbor * vy o (Vp,V3,V5) o
N (V4, Vg, Vg, V11) = ...
@ Hnitial entry e Termination condition
O updated entry » Distance Computation

A query * Angular/Euclidean Distance

Oothervertex ¢ .Cand|date||st
* Sorting

* Top-k nearest neighbors

Duke
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Background — ANNS Applications

e Retrieval augmented generation (for LLM)
(1 2 © 4

Data Index Relevant Information LLM
Preparation Data Retrieval Inference

Definition:
0' RAG takes input and retrieves a set of

PDFs, Word, PPT, etc. \L

1 — 55 ot o re/evant/support{'ng doFuments given
O e a source (e.g., Wikipedia). The

embeddings model Answer this question:
Foundation model AP, “How to track Databricks billing?”

documents are concatenated as
context with the original input prompt
and fed to the text generator which
l produces the final output.

Databricks Model Serving to LLM
route/credential/throughput/logging

l
G I
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Motivation — Some Profiling Results

e SSD I/O overhead
o Running HNSW and DiskANN on the graphs constructed on 3 datasets

HNSWEOSSD 1/0 Read m Compute and Sort DiskANN SSD I/0 Read @ Compute and Sort

100%
80% £ P9%W P54 B3y B4%W BlA R8% 4% B4% B9% PB8YW B5YW B3%
a

to 60%

o 0

5‘2‘35’ 71% 5% Ba%  B6% BN 2% 56%  B6%W B1od B2%  B5W  B7%

L 0%
batch 1024 2048 1024 2048 1024 2048 1024 2048 1024 2048 1024 2048

size

sift-1b deep-1b  spacev-1b sift-1b deep-1b  spacev-1b

o Why?
> Graph too large (> 500GB) = redundantly/frequently fetch partitioned graphs from SSD
o Limited SSD I/O bandwidth




Desigh — In-Storage Computing Principle

e Make queries swim upstream and filter the stream from storage

Queries

Vectors

Candidates

Limited
SSD'I/O

Vectors

Vectors




Design — Hardware Architecture

® QOverall NDSearch architecture

Host

Allocator

4
[©)

result
lists _ |Vgenerator

Internal Bus

o SearchSSD: Graph-traversal + Distance Computation
o FPGA: Sorting (Bitonic Sorting)




Evaluation

® Main Results
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non

Speedup normalized to CPU (shown in the histogram) and throughput (shown in the line chart) comparison on various platforms. We measure
the throughput by processing a batch (2048) of queries with the same memory trace on each benchmark.

NDSearch can improve the throughput by up to 31.7 X, 14.6 X, 7.4X, 2.9 X over CPU, GPU, a state-
of-the-art SmartSSD design and DeepStore, respectively.
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Our Takeaways

e Al will proactively retrieve information using contextual cues, before
being querized.

e Al systems will strategically “forget” redundant data, keeping only
essential patterns like biological memory.

e New architectures will merge memory and processing, eliminating
many exiting computing bottlenecks.
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