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Al model size is growing ~10x/year

Z EPOCH Al
Training compute (FLOP) 429 models
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Emergence of Native Multimodal LLMs
unifying Al across modalities

S 4
ChatGPT Al math tutoring
with voice and video

Google Gemini personal Al
assistant with voice and video

VL S
—_
> Seamless interaction with physical world via integration of multimodal data

» Process and generate text, images, audio, and video within a single model
> Perfect foundation for embodied intelligence




Al Compute
Challenge

Transistor count/
Compute performance

FINUS

Al compute gap

Al
Compute cost
doubles every
three months.

The gapis
growing

Moore’s law
ompute performance
doubles every two Lears.

Time

Short battery life

Power-hungry applications
drain battery life very
quickly.

&

Al power gap

GPU
700W

Brain
20W

Watch
1W




Self-Attention: Poor Scalability with Context Length

Attention scales poorly with context length, requiring quadratic
operations and memory for n tokens

Wo
d > Q / [
QXK l,softmax '
I ::|—> (S) S

— K

W,

- 1
W,
FFN «— Z
TINUS

%’ National Usiversity
of Singapore
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FLOPs Breakdown MOPs Breakdown
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Sparsity in LLM Workloads

 Mixture of Experts (MoE): Only a subset of expert modules are
activated per token: ~5.5% active parameters in Deepseek-v3 671B

DeepSeekMoE

[OOOO OOOO] Routed Expert :
Output Hidden h} Shared Expert

NUS DAOP: Data-Aware Offloading and Predictive Pre-Calculation for Efficient MoE Inference, DATE 2025



Sparsity in LLM Workloads

 Mixture of Experts (MoE): Only a subset of expert modules are
activated per token: ~5.5% active parameters in Deepseek-v3 671B

» Structured sparsity in attention: Sparse attention patterns (e.g.,
Mistral's sliding window, DeepSeek native sparse attention)

HEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE Native Sparse Attention Mechanism

k. ity Uit Split to Continuous Blocks 1

COTTTTTTICI T TTITTTIIOOTTTITT7] T f l
| 3 | :

' T

eC o
Compress T e
3k Compression A - oy I ]
S e . ® sliding Selected Attention Mask

]
Compressed Attention Mask

BT

C- = .
qt Compressed Attention ! Selected Attention Sliding Attention ]
CIT T 1} OO I1m (TII111] ]
Sliding Attention Mask
[:] Output [:] Output [:] Output
|

[ Gated Output ] D Attention Score D Query Token DD Activated Token ' Evicted Token D Ignored Token

Deepseek Native Sparsity



Structured Sparsity in Attentions

* Advanced attention mechanisms leverage diverse sparse matrix
computations with specialized patterns for enhanced efficiency

* Each type of attention mechanism requires unique dataflow

ANU
@ National Useversity

of Segapore
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Pruning + Knowledge Distillation + Quantization
1B & 3B Pruning & Distillation

Pre Training Data Mix Synthetic Data Prompts

Llama 3.1 405B Instruct

Llama 3.1 8B Pretrained Llama 3.1 70B Pretrained Inference
Stack

Logit Data Collected Fine Tuning Data Synthetic Data
Collected Data

Derived Data [ | """"""" N
I 1
Pretrained Model : |
At M \ amrd Llama 3.2 1B/3B Pretrained Llama 3.2 1B/3B Instruct
Pruning-based i
|

Instruct Model

—
D

«Q
0]
>
o

initialization

Model Size = BF16/FP16 FP8 INT4
3B 6.5 GB 3.2GB 1.75 GB

1B 2.5 GB 1.25GB  0.75GB
NU

Navoral Uneversity
@ of Sigapore Source: Meta



Sparsity in LLM Workloads

 Mixture of Experts (MoE): Only a subset of expert modules are
activated per token: ~5.5% active parameters in Deepseek-v3 671B

« Structured sparsity in attention: Sparse attention patterns (e.g.,
Mistral's sliding window, DeepSeek native sparse attention)

* Unstructured Sparsity: Individual parameters becoming zero via
pruning, activation, or training-time sparsity constraints

EENUS

10
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We need sparsity for efficiency...
But is the hardware ready?
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FINUS

The Hardware Lottery

Sara Hooker

Google Brain
shooker@google.com

Transformer Architecture is ideally matched with GPUs

Hardware, systems and algorithms research communities have historically
had different incentive structures and fluctuating motivation to engage with
each other explicitly. This historical treatment is odd given that hardware
and software have frequently determined which research ideas succeed (and
fail). This essay introduces the term hardware lottery to describe when a

research idea wins because it is suited to the available software and hard-
ware and not because the idea is superior to alternative research directions.

Examples from early computer science history illustrate how hardware lot-
teries can delay research progress by casting successful ideas as failures.
These lessons are particularly salient given the advent of domain special-
ized hardware which makes it increasingly costly to stray off of the beaten
path of research ideas. This essay posits that the gains from progress in
computing are likely to become even more uneven, with certain research
directions moving into the fast-lane while progress on others is further ob-
structed.

12
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GPU Architectural Advances /20,000

/
4500. ' = = V
R Single-Chip Inference Performance - 1000X in 10 years ,/
1100 4000%00
4000.00 10c
Transformer
Eng
3500.00
3000.00
¥ 2500.00
O
}_
m A
£ 2000.00 P /
Structured
Sparsity
1500.00
1249.00
' HMMA IMMA
et FP16 Tensor INt8 Tensor
DP4A Cores  Cores
50000 | >calar FP32 T agl iglx,
Kggi( 2“55};1'38 12500«
0.00 - i e

4112 814113 1227114 510/16 922117 2/4119  6/18/20 10/31/21 3/15/2

Blackwell gains w.r.t. K20X
» Number Representation (~32x)
FP32, FP16, Int8, FP4

» Complex Instructions (~12.5%)
DP4, HMMA, IMMA

» Technology node (~3x)
28m, 16nm, 7/nm, Snm, 4nm

» Die Size 2x

Source: Nvidia; Bill Dally
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GPUs Adopted Restricted
Structured Sparsity

Dense matrix Wo Structured-sparse

matrix W

Fine-grained

structured pruning

R > R
2:4 sparsity: 2 non-
zero out of 4 entries
C I I C
D= zero entry

GPUs cannot deal with
unstructured sparsity

Blackwell gains w.r.t. K20X
» Number Representation (~32x)
FP32, FP16, Int8, FP4

» Complex Instructions (~12.5%)
DP4, HMMA, IMMA

» Technology node (~3x)
28m, 16nm, 7/nm, Snm, 4nm

» Structured sparsity (~2x)

» Die Size 2x

» Total gain: ~4,800x in 11 years

Source: Nvidia; Bill Dally
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NUS Morpher Open-Source CGRA Toolchain

Config. Memory

v

/7
PE = PE M PE = pe| | LV
E|

PE = PE = PE = PE

v

| DATA MEMORY || DATA MEMORY |
-
-
-
-

SCAN ME

Abstract Basic .
Architecture Model Modules(Chisel)

! Dataflow i | \_l

Graph
DFG
T > . CGRA @ Hardware
Application e SPM Data ‘ Mapper Generator
source code Layout
with annotated - l l
kernel T l
est Mapping .
> Data —» Testdata Configurations Verilog RTL
Generation | '
1
l v ¢ w v * *
Simulation FPGA Area & Power
Emulation Estimation

https://github.com/ecolab-nus/morpher 16



https://github.com/ecolab-nus/morpher
https://github.com/ecolab-nus/morpher
https://github.com/ecolab-nus/morpher
https://github.com/ecolab-nus/morpher

Regular Dataflow on TPU and CGRA

Spatial Accelerators cannot deal
with unstructured sparsity easily

NERE IeeHreHP=HP:11 RREA
NERE IeeHPeHP=HP:]l RRRA
e EER
11 R E 111!

G _ G0 'nf Wn' J3E_ ENE lnf 1I:!I E3E3

Google TPU Matrix Multiply Unit (MXU) Dataflow

EBINUS
Navioral Useversity
of Sangapore

HiMap GEMM Schedule & Dataflow on CGRA



Winning the Hardware Lottery:
Algorithm-Architecture Codesign for Sparse LLMs

Technology

Opportunity

Examples

FINUS

The Top

01010011 01100011
01101001 01100101
01101110 01100011
01100101 00000000

Software

Software performance
engineering

Algorithms

el

Hardware architecture

Removing software bloat

Tailoring software to
hardware features

New problem domains
New machine models

Processor simplification
Domain specialization

=
Current Issue First release papers Archive About v ( Submit mani

Science

HOME > SCIENCE > VOL. 368, NO.6495 > THERE'S PLENTY OF ROOM AT THE TOP: WHAT WILL DRIVE COMPUTER PERFORMANCE AFTER MOORE'S LAW?

o] REVIEW

f X in o % O =

There’s plenty of room at the Top: What will drive com-
puter performance after Moore’s law?

Table 1. Speedups from performance engineering a program that multiplies two 4096-by-4096 matrices. Each version represents a successive
refinement of the original Python code. “Running time” is the running time of the version. “GFLOPS" is the billions of 64-bit floating-point operations per
second that the version executes. “Absolute speedup” is time relative to Python, and “relative speedup,” which we show with an additional digit of precision,
is time relative to the preceding line. “Fraction of peak” is GFLOPS relative to the computer's peak 835 GFLOPS. See Methods for more details.

Version Implementation Running time (s) Absolute speedup Relative speedup ofF;:::(“::/o)
1 Python 25,552.48

2 e BB 231208 0098

3 e e

4 Parallel loops

D R e T3 T IS

6 s vectorzabion L0 g S

7 plus AVX intrinsics

18




Sliding Window Attention

 Each token attend to fixed number of predecessors/successor tokens
* Reduces the complexity from quadratic to linear

 Often mixed with blocked, row-wise, column-wise attention

* Used in many models: Mistral-7B, DeepSeek MLA, Swin (Vision)

 But....efficient implementation on hardware is hard

 Naive implementation is worse than dense due to masking overhead

* GPU does not provide the fine granularity control

19



SWAT: Maximized data reuse

[ iteration i

Vi
[ iteration i+1 V.
data reuse .
Vis1
Ki—ll Ki |Kitq| Kisaf |Vito Iteration i
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‘+ FLifPrvie] i | St ] SR ER B LTSE
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R e e T == e e e S S |
K Vi - |
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EBAINUS
Natioral Useversity
of Singapore

For each Q, the used elements in K has the same
index as the elements in V because they are
projected from the same input (self-attention)

Iteration i+1
{ next to evict

KV KV KV

ie2fir2] [ 1 1 i
Q7

zi+2 Zi Zi—l

Table 1: The timing (in cycles) of the pipeline stages

ZRED1 ZRED2
LOAD | QK | SV 195 66 DIV&OUT
66 201 | 197 | ROWSUM1 | ROWSUM2 179
195 2

SWAT: Scalable and Efficient Window Attention-based Transformers Acceleration on FPGAs. DAC 2024



SWAT: Parameterized Design

random [lglobal Mwindow

Implementation on Xilinx US5C/U280

design time

parameters
1obal o g Design DSP | LUT | FF | BRAM

globa window random

X attn. cores attn. cores attn. cores FP16 (512 attn) 19% 38 % 11% 25%

) FP16 (BigBird 512 attn) 19% | 33% | 11 25%

j FP16 (BigBird 2 x 512 attn) | 38% | 66 % | 22 50%

K V loaded K V loaded KV loaded FP32 (51 2 attn) 49% 67% 23% 25%

shiiegln  AcSoC O et Butterfly (FP16, 120-BE) | 32% | 79% | 63% | 49%

parameters

SWAT supports a combination of structured patterns: row-wise, column-
wise, block-wise, for LongFormer, BigBird, and beyond. The pattern is
determined at compile-time and fixed in the bitstream



SWAT vs. GPU implementations

& 50x WG E
S a0x |- SWAT FPGA Sliding-Window
pedl ., | Attention achieves 15x energy-
2 . ffici GPU
Jlox -— =4 —h— efficiency over
S 0Ox — l .
= 1024 2048 4096 8192 16384
Input Length
SWAT FP16 vs. BTF-1 FP16 —— SWAT FP16 vs. BTF-2 FP16 1 .
—o— SWAT FP16 vs. GPU dense —@— SWAT FP16 vs. GPU sliding-chunks Slngle_batCh *
—m— SWAT FP32 vs. GPU sliding-chunks —— SWAT FP32 vs. GPU dense XilinX U5 5C VS. Nvidia A 1 OO
l :ercution time (ms) per attention Memory(MB) usage per attention 4 Improve d exe Cutl on tlm e ONn worse
. 1,000 technology node and much reduced
5 i power
0 0 . . .
* High energy efficiency gain:
\ \ . ° .
Input Length Input Length < 4096: A100 is under utilized
—&— Dense (GPU|FP32) —a— Sliding Chunks (GPU|FP32) . . .
. ST TEA e Bt AR > 4096: SWAT architectural benefits



In-memory computing for sparse attention

Diagonal index: -2-1 0 1 2

SerfSe
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B
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ASADI: ReRAM in-situ computing for sparse attention

can achieve at least 13x speedup over GPU

EINUS

of Singapore
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ASADI: Accelerating Sparse Attention using Diagonal-based In-situ Computing. HPCA 2024
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Unstructured Sparsity is hard

At 4-bit or 8-bit quantization, sparse matrix representation
formats used by hardware accelerators (CSR, COQO) require more
storage than Dense format due to meta-data overhead!!

Norm. Storage (8b)

Norm. Storage (4b)

Do

Resnet50 Layers

Dense

rpt

col

val

CSR format

3

-

N

-

1

Sparse storage formats lead to inflation not compression!
Bitmap decoding is costly due to long runlength of zeros

ZeD: A Generalized Accelerator for Variably Sparse Matrix Computations in ML. PACT 2024
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Taming Unstructured Sparsity: Bit-Tree Format

_ v CSR  ®COO Bitmap  *Bit Tree - - - Dense
_____First Pass . Jacl
1[170]0[1 = o °
&0 2 . @ 5 =
2[0[1]0]0] 2ears [21]2]2]0 s oo ® o 00
Second Pass > 2
5 1 Fp=® * AN
» 44|76 |« : Brs | aeetonhcdbel falegdbale. o | Gaeceny e Galecordias, siacan i des st o
QI—V <—L E - ************** * & * * * * * % * % . % *
o X 2¢ R X2 T2 TR o*Re*TE%
04000000000047602O .y
Compressed Values—» 0 10 20 30 4() 50
Resnet50 Layers
Storage: Same as ideal bitmap
Fast Decoding: N-passes over N-level Bit-Tree
Handles all sparsity level
Sparse CNNs, Sparse Attention -
/ \ Scientific Computing
% Sparsity : : : : : "
0 10 50 90  99.99+
NU S Region: |Hyper—Sparse
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Taming Unstructured Sparsity:

Irregular memory access ZeD ASIC accelerator
Stationary Input Row Streamlng.lnput row o Output Row slice achieves 3.2x
— slices
T (- T T ] performance-per-area
_ 2NN EEN [ improvement over SOTA
- [T for sparse ML workloads
< c=16 > < c=16 ?
Gustavson’s Dataflow: Row-wise product =3
N TBr:e M::i:':l;’rvm StreanirgRl:’/lvavt';Z Output Psum
T o1 b=,
2 2 8 ftsz
A2 > Multiplic':ation
E 1 . Unit ¢
’ n - Co:t":;:Zr f Accumulator
n . - Zero-l[J)eftection 4T
n+1 by
(P'OG_
Y

Reorder stationary matrix rows to maximally reuse streaming rows

EEANUS
ZeD: A Generalized Accelerator for Variably Sparse Matrix Computations in ML. PACT 2024 ¢



Can one architecture rule them all?



Architecture: Compute-Memory Tradeoit

» Power budget allocation (~1W) among compute (MAC), local/global SRAM,
off-chip memory access, and configurability

» As data becomes smaller (4 bit), instruction cost is very high!

» Ideal accelerator achieves performance speedup by adapting to emerging
workloads with minimal instruction/configuration cost
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Energy

at Snm
FP16 MAC 1 pJ
Local SRAM /word 5 pJ Configurations
Global SRAM /word 50 pJ

Off-chip memory/word 500 pJ

Off-Chip Memory Access

Compute GPP

2 GPU
TPU
FPGA
Ideal Accelerator

Local SRAN

Global SRAM



Canon: Ideal Sparse Transformer Accelerator

- [nstruction Flow
- Data Flow
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» Minimalist reconfigurable processing array that adapts to diverse
sparsity with minimal reconfiguration cost

» Smart algorithm that maps arbitrary dataflows on the fabric

» High parallel processing while handling complex dataflow dependencies

O NUS
95 A Data-Driven Dynamic Execution Orchestration Architecture. ASPLOS 2026



Toward Efficient Intelligence:
Rethinking Al Accelerators for Sparsity

 LLMs are growing faster than compute can scale.
Sparsity is not optional, it’s essential.

* Today’s hardware is fundamentally mismatched with
emerging sparse workloads.

» Specialized architectures show what’s possible; but we
need a universal, programmable accelerator.

 Winning the hardware lottery requires co-design:

architecture must evolve with algorithms, not after them.
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