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AI model size is growing ~10x/year
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Emergence of Native Multimodal LLMs
unifying AI across modalities
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LLM

ChatGPT AI math tutoring 
with voice and video

Google Gemini personal AI 
assistant with voice and video

ØSeamless interaction with physical world via integration of multimodal data
ØProcess and generate text, images, audio, and video within a single model
ØPerfect foundation for embodied intelligence



AI Compute
Challenge

GPU
700W 

Brain
20W 

Watch
1W 

AI compute gap AI power gap
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Self-Attention: Poor Scalability with Context Length
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Attention scales poorly with context length, requiring quadratic 
operations and memory for n tokens



Sparsity in LLM Workloads

• Mixture of Experts (MoE): Only a subset of expert modules are 
activated per token: ~5.5% active parameters in Deepseek-v3 671B
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Feed Forward 
Network

DAOP: Data-Aware Offloading and Predictive Pre-Calculation for Efficient MoE Inference, DATE 2025



Sparsity in LLM Workloads

• Mixture of Experts (MoE): Only a subset of expert modules are 
activated per token: ~5.5% active parameters in Deepseek-v3 671B
• Structured sparsity in attention: Sparse attention patterns (e.g., 

Mistral's sliding window, DeepSeek native sparse attention)
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Deepseek Native Sparsity



Structured Sparsity in Attentions
• Advanced attention mechanisms leverage diverse sparse matrix 

computations with specialized patterns for enhanced efficiency
• Each type of attention mechanism requires unique dataflow
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Pruning + Knowledge Distillation + Quantization

9Source: Meta



Sparsity in LLM Workloads

• Mixture of Experts (MoE): Only a subset of expert modules are 
activated per token: ~5.5% active parameters in Deepseek-v3 671B
• Structured sparsity in attention: Sparse attention patterns (e.g., 

Mistral's sliding window, DeepSeek native sparse attention)
• Unstructured Sparsity: Individual parameters becoming zero via 

pruning, activation, or training-time sparsity constraints 
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We need sparsity for efficiency…
But is the hardware ready?
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Transformer Architecture is ideally matched with GPUs



GPU Architectural Advances
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Blackwell gains w.r.t. K20X
Ø Number Representation (~32x)
    FP32, FP16, Int8, FP4

Ø Complex Instructions (~12.5×)
    DP4, HMMA, IMMA

Ø Technology node (~3x)
   28m, 16nm, 7nm, 5nm, 4nm

Ø Die Size 2x

B200
20,000

Source: Nvidia; Bill Dally



GPUs Adopted Restricted
Structured Sparsity
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Blackwell gains w.r.t. K20X
Ø Number Representation (~32x)
    FP32, FP16, Int8, FP4

Ø Complex Instructions (~12.5×)
    DP4, HMMA, IMMA

Ø Technology node (~3x)
   28m, 16nm, 7nm, 5nm, 4nm

Ø Structured sparsity (~2x)

Ø Die Size 2x

Ø Total gain: ~4,800x in 11 years

Source: Nvidia; Bill Dally

GPUs cannot deal with 
unstructured sparsity



NUS PACE CGRA: SOTA Efficiency
8x8 CGRA: 1.1 mW at 10MHz
582 GOPS/W at 0.45V, 40nm ULP 
Estimated 1 TOPS/W at 22nm 

15PACE: A Scalable and Energy Efficient CGRA in a RISC-V SoC for Edge Computing Applications. Hot Chips 2024

Wearable EEG



NUS Morpher Open-Source CGRA Toolchain 

https://github.com/ecolab-nus/morpher
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Area & Power
Estimation
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https://github.com/ecolab-nus/morpher
https://github.com/ecolab-nus/morpher
https://github.com/ecolab-nus/morpher
https://github.com/ecolab-nus/morpher


Regular Dataflow on TPU and CGRA
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Google TPU Matrix Multiply Unit (MXU) Dataflow

HiMap GEMM Schedule & Dataflow on CGRA

2x2 GEMM Computation
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Spatial Accelerators cannot deal 
with unstructured sparsity easily



Winning the Hardware Lottery: 
Algorithm-Architecture Codesign for Sparse LLMs
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Sliding Window Attention

• Each token attend to fixed number of predecessors/successor tokens
• Reduces the complexity from quadratic to linear

• Often mixed with blocked, row-wise, column-wise attention 
• Used in many models: Mistral-7B, DeepSeek MLA, Swin (Vision)
• But….efficient implementation on hardware is hard
• Naïve implementation is worse than dense due to masking overhead
• GPU does not provide the fine granularity control
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SWAT: Maximized data reuse
For each Q, the used elements in K has the same 
index as the elements in V because they are 
projected from the same input (self-attention)

SWAT: Scalable and Efficient Window Attention-based Transformers Acceleration on FPGAs. DAC 2024



SWAT: Parameterized Design

SWAT supports a combination of structured patterns: row-wise, column-
wise, block-wise, for LongFormer, BigBird, and beyond. The pattern is 
determined at compile-time and fixed in the bitstream

Implementation on Xilinx U55C/U280



SWAT vs. GPU implementations

Single-batch:
Xilinx U55C vs. Nvidia A100
• Improved execution time on worse 

technology node and much reduced 
power

• High energy efficiency gain:
< 4096: A100 is under utilized
> 4096: SWAT architectural benefits

SWAT FPGA Sliding-Window 
Attention achieves 15x energy-
efficiency over GPU



In-memory computing for sparse attention
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ASADI: ReRAM in-situ computing for sparse attention 
can achieve at least 13x speedup over GPU

ASADI: Accelerating Sparse Attention using  Diagonal-based In-situ Computing. HPCA 2024
 



Unstructured Sparsity is hard

24ZeD: A Generalized Accelerator for Variably Sparse Matrix Computations in ML. PACT 2024
 

At 4-bit or 8-bit quantization, sparse matrix representation 
formats used by hardware accelerators (CSR, COO) require more 
storage than Dense format due to meta-data overhead!!

Sparse storage formats lead to inflation not compression!
Bitmap decoding is costly due to long runlength of zeros 



Taming Unstructured Sparsity: Bit-Tree Format
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Storage: Same as ideal bitmap
Fast Decoding: N-passes over N-level Bit-Tree
Handles all sparsity level 



Taming Unstructured Sparsity: 
Irregular memory access

26ZeD: A Generalized Accelerator for Variably Sparse Matrix Computations in ML. PACT 2024
 

ZeD ASIC accelerator 
achieves 3.2x 
performance-per-area 
improvement over SOTA 
for sparse ML workloads

Gustavson’s Dataflow: Row-wise product

Reorder stationary matrix rows to maximally reuse streaming rows 



Can one architecture rule them all?



Architecture: Compute-Memory Tradeoff
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Ø Power budget allocation (~1W) among compute (MAC), local/global SRAM,  
off-chip memory access, and configurability

Ø As data becomes smaller (4 bit), instruction cost is very high!
Ø Ideal accelerator achieves performance speedup by adapting to emerging 

workloads with minimal instruction/configuration cost

PE PE PE PE

PE PE PE PE

PE PE PE PE

PE PE PE PE

Energy 
at 5nm

FP16 MAC 1 pJ

Local SRAM/word 5 pJ

Global SRAM/word 50 pJ

Off-chip memory/word 500 pJ



Canon: Ideal Sparse Transformer Accelerator
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Algorithm

Sparsity

Orchestrator

Reconfigurable accelerator

Ø Minimalist reconfigurable processing array that adapts to diverse 
sparsity with minimal reconfiguration cost

Ø Smart algorithm that maps arbitrary dataflows on the fabric
Ø High parallel processing while handling complex dataflow dependencies

A Data-Driven Dynamic Execution Orchestration Architecture. ASPLOS 2026
 



Toward Efficient Intelligence: 
Rethinking AI Accelerators for Sparsity

• LLMs are growing faster than compute can scale.
Sparsity is not optional, it’s essential.

• Today’s hardware is fundamentally mismatched with 
emerging sparse workloads.

• Specialized architectures show what’s possible; but we 
need a universal, programmable accelerator.

• Winning the hardware lottery requires co-design: 
architecture must evolve with algorithms, not after them.
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Thank You


