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Transformer size: ~240x/2yr
Vision transformer size: ~10x/1yr
GPU/TPU memory: ~2x/2yr

Constrained application memory: 10x-104x less

The rapid growth of LLM parameters is outpacing the 
increase in GPU memory capacity, and the gap makes 
model on-device adaptation exceedingly hard

GAP

Motivation: Memory Wall Problem of Foundation Models

The emergence of reasoning models and long-
sequence processing, memory bottleneck intensifies 
for the traditional transformer-based models

Can we develop a memory efficient model adaptation as 
opposed to parameter efficiency of LORA?

Can we have the performance of transformers while 
leveraging the benefits of linear attention?

Courtesy: AIL Lab Research, 
Intel

Courtesy: AIL Lab Research, 
Intel

Photo Courtesy: Google Search

Can we yield efficient models that are more robust to 
security issues like hallucination?
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Personalized: Demand for adaptive automation

Efficient: For democratized and sustainable deployment

Reliable: For sensitive generative tasks
Detected objects: “dog”, “bed”

Hallucinated objects: “chair”`

“Please help me 
describe the image in 
detail.”

Ground truth 
objects:
"couch", 

"dog", "bed"

Efficient 
fine-tuning

Parameter efficient 
fine-tuning

Memory

Towards linear-
attention

Improving 
hallucination

Outline: Towards a Comprehensive Solution for Personalized LLMs
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Limitations of State-of-the-Art Adapter Based Approaches

 Despite reduced parameter count w.r.t full fine-
tuning (FFT), LoRA [1] has a large trainable 
parameter count!

 ELoRA [2] reduces trainable parameter count by 
freezing LoRA projection matrices (PM) and 
using only two trainable vectors!

𝑟𝑟𝐿𝐿 ≪ 𝑟𝑟𝑉𝑉

Frozen tensor Trainable tensor

ELoRA [2] seems to achieve comparable performance with extremely 
small number of trainable parameters without any sacrifice.

[1] E. J. Hu, et al. “LoRA: Low-Rank Adaptation of Large Language Models”, ICLR 2022
[2] D. J. Kopiczko, et al. “ELoRA: Efficient Low-Rank Adaptation with Random Matrices”, ICLR 2024

5



Limitations of State-of-the-Art Adapter Based Approaches
However,
 ELoRA significantly increases FLOP count for fine-tuning
 ELoRA with lower rank leads to performance degradation​

We measured the accuracy of ELoRA with 
rank (r) of 4 and 1024 on two datasets.

Model with r=4 yields poorer performance

This highlights the accuracy sacrifice in making the PMs untrainable when rank is low​
6



Our Approach: Adaptive Freezing of LoRA (AFLoRA) 

[3] Q. Zhang, et al. “PLATON: Pruning Large Transformer Models with Upper Confidence Bound of Weight Importance”, ICML 2022

Pre-trained 
weights
𝑊𝑊0

𝑙𝑙

𝑏𝑏0𝑙𝑙=0

𝑑𝑑0𝑙𝑙 =0.1

𝐴𝐴0𝑙𝑙 =KU()

+
Pre-trained 

weights
𝑊𝑊0

𝑙𝑙
𝐴𝐴𝑙𝑙=FT(𝐴𝐴0𝑙𝑙 )

+𝑟𝑟𝐿𝐿 𝑟𝑟𝐿𝐿

 AFLoRA starts fine-tuning with trainable PMs and vectors. It adaptively 
freezes the PMs (but always updates the vectors)!

 AFLoRA has similar rank as that with LoRA yielding reduced FLOPs!
 AFLoRA has similar effective trainable parameters as that with ELoRA!
 Adaptive freezing of AFLoRA potentially avoids overfitting over small dataset!

Frozen tensor Trainable tensor
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Our Approach: Adaptive Freezing of LoRA (AFLoRA) 

[3] Q. Zhang, et al. “PLATON: Pruning Large Transformer Models with Upper Confidence Bound of Weight Importance”, ICML 2022
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Frozen tensor Trainable tensor

Λ𝑏𝑏𝑙𝑙 = diag(𝑏𝑏𝑙𝑙)

Trainable Vectors

Trainable Projection Matrices
𝑌𝑌 = 𝑊𝑊0

𝑙𝑙𝑋𝑋 + Λ𝑏𝑏𝑙𝑙 𝐵𝐵𝑙𝑙Λ𝑑𝑑𝑙𝑙 𝐴𝐴𝑙𝑙𝑋𝑋

Λ𝑑𝑑𝑙𝑙 = diag(𝑑𝑑𝑙𝑙)

Trainable Vectors

Frozen Projection Matrices
𝑌𝑌 = 𝑊𝑊0

𝑙𝑙𝑋𝑋 + Λ𝑏𝑏𝑙𝑙 𝐵𝐵𝑙𝑙Λ𝑑𝑑𝑙𝑙 𝐴𝐴𝑙𝑙𝑋𝑋
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Our Approach: Adaptive Freezing of LoRA (AFLoRA) 

[3] Q. Zhang, et al. “PLATON: Pruning Large Transformer Models with Upper Confidence Bound of Weight Importance”, ICML 2022​

Pre-trained 
weights
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+
Pre-trained 

weights
𝑊𝑊0

𝑙𝑙
𝐴𝐴𝑙𝑙=FT(𝐴𝐴0𝑙𝑙 )

+𝑟𝑟𝐿𝐿 𝑟𝑟𝐿𝐿

Frozen tensor Trainable tensor

𝐼𝐼𝐴𝐴𝑙𝑙 = ∇ℒ(𝜃𝜃) , ̅𝐼𝐼𝐴𝐴𝑙𝑙
(𝑡𝑡) = 𝛽𝛽1 ̅𝐼𝐼𝐴𝐴𝑙𝑙

(𝑡𝑡−1) + 1 − 𝛽𝛽1 𝐼𝐼𝐴𝐴𝑙𝑙
𝑡𝑡

𝑈𝑈𝐴𝐴𝑙𝑙
(𝑡𝑡) = 𝐼𝐼𝐴𝐴𝑙𝑙

𝑡𝑡 − ̅𝐼𝐼𝐴𝐴𝑙𝑙
(𝑡𝑡) , �𝑈𝑈𝐴𝐴𝑙𝑙

(𝑡𝑡) = 𝛽𝛽2 �𝑈𝑈𝐴𝐴𝑙𝑙
(𝑡𝑡−1) + 1 − 𝛽𝛽2 𝑈𝑈𝐴𝐴𝑙𝑙

𝑡𝑡

We calculate the freezing score as

𝑠𝑠𝐴𝐴𝑙𝑙
(𝑡𝑡) = 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚( ̅𝐼𝐼𝐴𝐴𝑙𝑙

(𝑡𝑡) ∘ �𝑈𝑈𝐴𝐴𝑙𝑙
(𝑡𝑡))

Freezing score at iteration t
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Our Approach: Adaptive Freezing of LoRA (AFLoRA) 

[3] Q. Zhang, et al. “PLATON: Pruning Large Transformer Models with Upper Confidence Bound of Weight Importance”, ICML 2022​
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Frozen tensor Trainable tensor

 At step t, we freeze the lowest k% of PMs using freezing score
 The k is calculated from the cubic scheduling [3]
We set a hyper-parameter 𝑡𝑡𝑓𝑓 to ensure all PMs freeze after 
𝑇𝑇 − 𝑡𝑡𝑓𝑓 where 𝑇𝑇 is the number of total iteration 
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Experimental Results: Comparision with the SoTA

Results with LLaMA-7B** on complex reasoning task

Results with BART-Large** on summarization task

 AFLoRA fine-tuned models yields higher performance compared to the alternatives!
 AFLoRA fine-tuning requires up to 9.5x fewer average params. than the SoTA

Results with DeBERTaV3* on GLUE benchmark

*We only apply AFLoRA to 
the PMs in the FFN and 
freeze the PMs in attention 
layers.​

**We apply AFLoRA on all 
the PMs in the models.​
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Experimental Results: Efficiency Evaluation

Results with DeBERTaV3* on GLUE benchmark: System Metrics​

 AFLoRA yields up to 1.86x runtime improvement!
 AFLoRA yields up to 2.96x reduced FLOP! 

*We only apply AFLoRA to the PMs in the FFN and freeze the PMs in the attention layers.​
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Summary

 Parameter Efficient Fine Tuning (PEFT) is an important approach towards 
extending the applicability of large language models to a variety of datasets​

 AFLoRA’s adaptive freezing the PMs provides the benefits of trainable PMs 
with up to 9.5x fewer average trainable parameters than the SOTA

 Results on a variety of language models with different tasks demonstrate 
performance, FLOPs, and run-time advantages

13
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Background - Self Attention 

Meta/Llama Google/Gemma Mistral AI Tongyi/Qwen

Most open-source LLMs employ standard softmax-based self-
attention as the core token-mixing mechanism. 

This architecture has achieved remarkable success across a wide range 
of tasks, including NLP, CV, and speech understanding.

However, the quadratic computational complexity with respect to 
sequence length remains a significant bottleneck, particularly for 

deployment on edge devices and in long-context scenarios.

Amazon/Nova
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Background - Recurrent Model

Mamba RWKV Flash linear attention

Modern recurrent models can be broadly categorized into 
state space models and linear attention models

Models can achieve O(N) complexity by avoiding explicit pairwise token 
interactions by propagating compressed memory states across time.

However, pre-training a large-scale recurrent model still demands 
significant computation resource which hinder widespread adoption.

[1] https://tridao.me/blog/2024/mamba2-part1-model/
[2] https://wiki.rwkv.com/
[3] https://github.com/fla-org/flash-linear-attention
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Background - Linearization via Distillation
Recently, some research propose to convert existing 
quadratic transform LLMs into linear complexity LLMs

LlamaInMamba

Require ~20% of the original 
pre-training tokens

LoLCATs

Perform well only on the tasks 
with sequence lengths similar 

to the training data.Retains half of attention layers

Is there a 
way to 

efficiently 
maintain or 

even 
extend the 

model’s 
context 
length?

17
[1] Junxiong Wang, et al. The Mamba in the Llama: Distilling and Accelerating Hybrid Models. [2] Michael Zhang, et al. LoLCATs: On Low-Rank Linearizing of Large Language Models



Motivation - The Local Modeling in Self-Attention
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Attention mechanism is famous for its large receptive field and outstanding long-range modeling 
capability. But, [1] find that effective local modeling is crucial for its effectiveness.

[1] Dongchen Han, et al. Bridging the Divide: Reconsidering Softmax and Linear Attention

Softmax attention 
exhibits strong local bias. 

Increasing local bias may enhance the expressive power of linear attention

Linear and InLine Attn. yield 
meaningful Attn. dist., but focus 

more on global modeling.



LAWCAT - Linear Attention with Convolution across Tokens

19removes RoPE and sliding window attention. 

Causal depthwise Conv 
1D layer across token

Shared linear 
projection

Special 
normalization
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Accuracy on passkey retrieval from 1k to 32 k (distill and fine-tune on 1k-length dataset)

For Llama3 8B, our LAWCAT can extend the effective context length from 8k to ~11k.
For Llama3.2 1B, LAWCAT also can preserve the performance until 9k.

For Mistral v0.1 7B and Mistral v0.3 7B models, our LAWCAT can extend the effective 
context length to ~23k/15k respectively.

Results - Passkey Retrieval



Results - S-NIAH 1&2&3(distill and fine-tune on 1k-length) 
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Even if we only distill&ft the model on 1k-length dataset with S-NIAH-3 
format, our LAWCAT models can generalize the performance to other tasks 

Our LAWCAT demonstrates superior robustness to increasing input 
lengths, with notably smaller performance drops than other SoTAs



Results – Latency Benchmark (Prefill stage)

22

From 1k to 8k sequence length, the 
Transformer model exhibits slightly 

lower latency than LAWCAT. 

However, beyond 8k, LAWCAT becomes 
increasingly more efficient, with the latency 

gap widening as the input length grows.



Summary

We propose a novel distillation framework, LAWCAT, 
which leverage Conv across time and GLA with 
normalization to approximate the transformers.

 Our LAWCAT framework enables efficient linearization 
while maintaining competitive performance and exhibits 
strong robustness to long context.

25

 Future work may focus on more effective integration with sliding window 
attention, which holds promise for further enhancing performance.
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LLaVa-1.5: “The image features two dogs
lying on a bed, one on the left side and the
other on the right side. They appear to be
relaxed and comfortable, possibly sleeping
or resting. The bed is covered with a blue
blanket, providing a cozy environment for
the dogs.\n\nIn addition to the dogs, there
is a chair located in the background,
positioned behind the bed. The scene
captures a peaceful and restful moment
shared between the two dogs.”

Hallucinations in VLMs

Detected objects: “dog”, “bed”

Hallucinated objects: “chair”`

“Please help me describe the image in detail.”

Ground truth objects:
"couch", "dog", "bed" LLaVa-1.5: "No, there is 

no spoon in the image. The man 
is eating a donut, not using a 
spoon."

“Is there a spoon in the 
image?”

Image Captioning Visual Q/A
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Why Do Vision-Language Models Hallucinate?

Prompt: “A chat between a curious human and an artificial intelligence assistant. The assistant gives helpful,
detailed, and polite answers to the human's questions. USER: <image> Please help me describe the image in
detail. ASSISTANT:”

• Image tokens receive <10% of total attention from 
layer 3, while constituting ∼76-92% of the input

• This causes the model to ignore the context 
provided by image (taken as the “fact”), 
potentially leading to hallucinations

576 image tokens49 text tokens



30

Existing Methods

Training-based Methods

 Factually-Augmented RLHF: 
Reinforcement Learning from 
Human Feedback

 FGAIF: Reinforcement Learning 
using fine-grained AI feedback

 LACING: separate attention streams 
for visual and textual inputs

Training-free Methods

 VCD: contrastive decoding 
between original and distorted 
visual inputs

 PAI: contrastive decoding with and without image 
priors and increased attention to image tokes

 DAMRO: contrastive deco-
ding between entire image 
and only outlier visual tokens

Training-based Methods require large-
scale resources (e.g., 8×

A100 GPUs with 40GB memory each)

Training-free methods use contrastive decoding for 
hallucination reduction incurring additional latency 

overhead (~2X)!!

Courtesy: DAMRO

Courtesy: VCD

https://arxiv.org/pdf/2410.04514
https://openaccess.thecvf.com/content/CVPR2024/papers/Leng_Mitigating_Object_Hallucinations_in_Large_Vision-Language_Models_through_Visual_Contrastive_CVPR_2024_paper.pdf


31

 We observe that hallucination in LVLMs often stems from specific 
attention heads exhibiting insufficient attention to visual input, which we 
refer as "image-inattentive heads"

 We present SPIN, SuPpressing image INattentive heads, a training-
free method to reduce hallucinations incurring no computational or 
latency overhead

 SPIN dynamically suppresses attention heads for each input token, 
reducing the attention imbalance and enhancing model performance

SPIN: SuPpressing image INattentive heads (Our 
Approach)
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 To suppress problematic attention heads, we introduce masked multi-head attention (MHA)

 We use a dynamic mask mi for each attention head i, where mi is obtained based on the 
attention of the current text query token qi to key vision tokens
o mi = 1: the head is kept intact 
o mi = α: head suppressed using suppression factor α
o α = 0: the head is completely suppressed or pruned

SPIN Multi-head Attention
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 A lower Cs/CI score indicates fewer 
hallucinated objects, while a higher F1 
indicates higher caption accuracy

 Problematic heads typically lie in the first 16 
to 20 layers, but are uniformly distributed 
across all layers for LLaVA-7B

 r ranges from 5% (LLaVA-7B) to 30% (Qwen-
VL), indicating specialized heads in LLaVA vs. 
distributed head functionality in Qwen-VL

CHAIR Evaluation for Image Captioning
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 While SPIN can be applied irrespective of the decoding strategy, it is more effective for greedy 
and beam-search decoding, due to the variability in token selection for nucleus sampling

 SPIN reduces hallucination scores up to 3x over baseline and existing methods

 SPIN achieves the highest throughput among SoTA approaches, while achieving throughput 
performance close to baseline

CHAIR Evaluation for Different Decoding Methods
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Qualitative Comparison of Image Captions

LLaVa-1.5: The image features two dogs
lying on a bed, one on the left side and the
other on the right side. They appear to be
relaxed and comfortable, possibly sleeping or
resting. The bed is covered with a blue
blanket, providing a cozy environment for the
dogs. In addition to the dogs, there is a chair
located in the background, positioned behind
the bed. The scene captures a peaceful and
restful moment shared between the two dogs.

“Please help me describe the image in detail.”

LLaVa-1.5: "No, there is no spoon
in the image. The man is eating a 
donut, not using a spoon."

“Is there a spoon in the image?”

SPIN: The image features two dogs lying on a bed, with one dog being a 
white dog and the other being a black dog. The white dog is lying on the left 
side of the bed, while the black dog is lying on the right side. Both dogs appear 
to be sleeping or resting, possibly enjoying each other's company. The bed is 
covered with a blanket, providing a comfortable surface for the dogs to lay on.

SPIN: "Yes, there is a spoon in the 
image."
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 Adaptively freezing LoRA projection matrices can reduce computation and overfitting 
when fine-tuning the LLMs for downstream tasks

 Using the LAWCAT framework, we can efficiently distill pre-trained transformer-based 
models into linear attention model while maintaining long context ability and less latency, 
making it well-suited for edge deployment

 Reliable deployment of vision foundation models can be achieved at no additional cost 
through identification and suppression of problematic heads

Summary and Conclusions
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