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Al Model Scaling Hits Hardware Wall

+ Al compute/model scaling doubles every 5 months
¢+ Significantly outpace Moore’s law and Memory scaling

Training compute of notable Al models by domain, 2012-24

Source: Epoch Al, 2025 | Chart: 2025 Al Index report
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Al Model and Hardware Co-Design

‘ + Traditionally, fixed ML algorithms = then systems optimization

¢+ Invent ML algorithms that are hardware-aware and ML algorithm,
system, hardware co-design
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Electrical Computing vs Photonic Computing

High speed

Delay 100 ns ~ 1 us
A few hundred clock cycles

—>

Electronic
Matrix Unit

—

Delay < 1 ns

Photonic
Matrix Unit

>

Computing as light propagate

Source: https://www.lightelligence.ai/

Massive parallelism
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General Photonic Al Computing Paradigm

+ Encode weight matrix into photonic circuit transformation

v Efficient one-shot Wx by forwarding optical signal

= -
- Photonic Tensor -
- Core B
- t t t 1 —

I I I I e,
Optical Electrical Weight Opftical .
Inputs Encoding Outputs

.
- S S S S S e e DS e e DS e e D e e B e e e e e

*
-

..................

s ™y g ™) = 1‘"'_'..5 —E E
] n n n —, " ~N
S V() »(n) U @) — ___g _E_
B ¢ ) ) 82 S

MZ1 Mesh

[Nat. Photon’17] [Science’23]

¢ f

A

N

PCM Crossbar

[Nature’'21]

-

Jnoue

C

OO |
l*.I'IFIHE

000

MRR Bank
[SciRep’17]




Move to Support GenAl Workloads: Transformers!

v Prior Optic Al 2 Designed for CNN (fixed weights and positive Inputs)

+ Dynamic Matrix Multiplication
»  Real-time operand programming

+ Full-range Operands

MatMul
A
SoftMax %
T
[ Scale | > [ MatMul ]
i 11
I\%atl\/lul X y
Q 1 v Dynamical and full-range

activations
Attention 8



Prior PTCs as Plug-in-and-Play Solutions? No!

Ele ctr"ca/ |/|Veight En codin§

* *

: : Output
Weight Matrix
W J y =Wx
Non-negative only operands High operand mapping Cost Slow device programming
in incoherent PTC (light (time-consuming (adoption of low-loss, compact
intensity modulation) decomposition step) weight modulators)

X o xy ... >4xmorecosty mzI w CT T T T T TTT ! 10ns-10us
Yy — Arrays . I Elnntrical Wninht Encoding

Photonic Al accelerators as a plug-in-and-play solution?
Answer is No! They are not efficient!
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L
Our Lightening-Transformer, HPCA’24 o5 > v

‘ v The first versatile photonic accelerator for universal Al models
¢+ Deliver 100-1000x performance gain than electronics on Transformers
v First open-sourced arch-level simulator for optical Al accelerator

[Na

Specialized/CNN-suitable [Nature’21] [Nature'21] [Nature’22]

Bl Optical Hardware 72 “Fmnl | | (I
" A JIGHTMATTER
. [Nature’25] aims to address

VGG GPT
- @ Any GEMM- o g
based workload e ——
Zhu, Hanqing, Jiaqi Gu, Hanrui Wang, Zixuan Jiang, Zhekai Zhang, Rongxing Tang, Chenghao Feng, Song Han, Ray T. Chen, and David Z. 10

Pan. "Lightening-transformer: A dynamically-operated optically-interconnected photonic transformer accelerator.". HPCA 2024.



A Novel Versatile Photonic GEMM Primitive

¢ Compute via direct light-light interaction

High-speed encoded Fully-passive internal
& Full-range optical circuit
optical inputs 1
z X = (1 j) E(m " i
> LxFj
Balanced
Photodetector

!
— 1 =
Y EJ{I—’E)

Dynamic dot-product engine: DDot
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A Novel Versatile Photonic GEMM Primitive

¢ Compute via direct light-light interaction - Dynamical modulation cost concern

¢ Crossbar-style photonic tensor core via optical broadcast

¢ Maximized intra-core operand sharing for both X and Y (memristor crossbar: W(X) only)
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Unique Arch-level Opt. in Optical Accelerator

¢ Optical Al efficiency bottleneck: Data movement & signal conversion (ADC)

¢ Our solution:

> Share signals with photonic interconnects to reduce data movement cost
> Explore data locality with a time integrator in analog domain to reduce signal conversion cost
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Ours vs. SOTA Digitals

¢ 100 — 1000 x lower energy-delay product than CPU, GPU, FPGA, Edge TPU
> >100x latency speedup

¢ Firstto show the huge potential of optics for adv. ML workloads
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More for Our

Al Journey

Photonic Al
Design Stack

Photonic
Computing
Hardware
Design

Circuit-Model

Co-Optimization

Deployment &
Application

Publications: >30 in CAD, ML, Arch, Photonics Communities
(Hardware/software design + Chip tape-out)

Area Efficiency Adaptability Robustness Versatility

SqueezeLight, O?NN, Optical RNN DOTA: First Photonic
MOON [DATE21] (Tape- [ ] Transformer
out) [DATE’ 21][CLEO’23] | (Tape-out) J} . Accelerator [HPCA'24] |

ADEPT: Auto Design | Mem-Efficient Photonics + MTJ
[DAC22] (Best-in-Track) [ICCV’21] , [ICCAD’22]

) Butterfly-style ONN ' ,
[  ASP-DAC’20 BPA, TCAD’20, ACS J - P?,'(’:‘;\‘fg']’;%mg_ out
Photonics’22] (Tape-Quf) P

Model Compression Robust ONN
[NeurlPS’22 MLSys, Spotlight] J [ , DATE’20] |

NeurOLight PCM-ONN
[NeurlPS’22, Spotlight] [ASP-DAC’22, TCAD’22]

FLOPS; MixedTrain: Zeroth-order On-chip Training
[ DAC’20, BPC] [ ;s NSF Workshop BPA] [AAAI'21 ]

L2ight: Scalable On-chip Training [NeurlPS’21]
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Training of LLMs Takes a Lot of Memory!

+ Pre-training LLaMA-7B model (BF16, batch size of 1)
,  Trainable Parameters (Weights): 14GB Activations

,  Gradients: 14GB ‘

, Activations: 2GB Weights

Opti
Sta

Gradient

17



Training of LLMs Takes a Lot of Memory!

¢ Pre-training LLaMA-7B model (BF16, batch size of 1)
,  Trainable Parameters: 14GB Activations
» Gradients: 14GB
»  Activations: 2GB

Weights

+ Default optimizer-> AdamW
,  Store first and second order estimates
» Twice of the model weights: 28GB

Gradient

18



Existing Solution - System-level

Exemplar techniques: Activations
Memory offloading, optimizer
states parallelism

Weights

S\ SRAM:19TB/s (20 MB)
SRAM

SECE HBM: 1.5 TB/s (40 GB)
HBM

BV ET N (e1a DRAM: 12.8 GB/s
(CPU DRAM) (>1TB)

Gradient

Trade time for less memory

19



Existing Solution - Algorithm-level

Exemplar techniques:
Low-rank:
Galore, Low-rank Adaption(LoRA)
Quantization:
8-bit optimizer, Low-precision Training
Optimizer Redundancy:
Adam-mini

Activations

Weights

Fine-tuning only; Still memory- Gradient

intensive; Costly SVD

20



Our Proposed APOLLO, MLSys’25 % #Lg:ing FaceAi;%r;; ]

+ New-record memory-efficiency, low-overhead, powerful as Adam(W)
» Train LLaMA-7B model with <12GB memory (cf. 58GB)!!! You can use a NVidia Titan to train 7B!

— %, g @ Activations
= © “‘ ®l eights

C4 Dataset LLaMA-7B NVidia Titan

Memory comparison

AdamW | I
Galore | || H 4 A P O LLO
APOLLO A
el Larger Model
APOLLO-Mini —/1 Acti'\fa.t1011‘ i
[ Optimization
< ; [ Weight Gradient
(Q") APOLLO-Mini : I chcrs .
e——T0 20 30 40 50 60 Low-end GPU Gradient

Memory cost (GB)

Zhu, H., Zhang, Z., Cong, W., Liu, X., Park, S., Chandra, V., Long, B., Pan, D.Z., Wang,
Z. and Lee, J., 2024. Apollo: Sgd-like memory, adamw-level performance. MLSys’25
Outstanding Paper Honorable Mention Award 21



Rethink AdamW in a Structured Version

‘ ‘ Adam(W) Wi =Wy —n- dt, ét =

Theoretical
equivalent
reformulation

‘ Reformulated

Adam(W) Wt-l—l — Wt — 1
§tructura|ize S =

G .
= into a channel-
wise/tensor-wise

Gl )l
|Gel:, 1]l

‘ Structured
Adam(W)

M,

Training Loss
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Wait @! No memory benefits for doing so!

' i : Int diat
40r any weight update W, at iteration t E ntermediate
Stored

Adam(W) updates 1% order and 2" orde
moments

Obtain gradient update Et - Diag(ll )

Structured Learning
Rate Update




Approximate Structured Learning Rate in Low Rank Space

ILor any weight update W, at iteration t D Intermediate
D Stored

Get the compressed gradient matrix R, <«

Adam(W) updates 1%t order and 2" orde

moments

Obtain gradient update G, - Diag(ll \

Structured Learning
Rate Update



APOLLO: Memory benefit 2Zmn - 2mr + 1

Memory Cost

Dlag( )

Structured Learning
Rate Update



APOLLO: Many Firsts in Efficient LLM Training

‘ + First time enable pre-training with an SVD-free approach

»  Random projection works with a theoretical bound!
» An elegant factor to compensate error introduced by the low rank r

model.layers.7.self_attn.k_proj.weight model.layers.18.self_attn.o_proj.weight
Bounded update ratio s”/s Now, we can bound the B0 T, [ T
difference between the gradient scaling factor in the compact % T:g 10000 -
original space based on the theorem 4.1 and theorem 4.2: > >
3 3 3 100000 F §
R:|:, 7 Gyl g Rl 7 Gyl:, 7 Q 3]
st /sy = IRalodll IGAE _ IRiLsdll Gl 3 ER
IR NGl NGl IR s 50000 &
o )
n 0 | 1 1 I ] vl 0 .............
0 20000 40000 60000 0 20000 40000 60000
©) Stens Stens
APOLLO-1/8n APOLLO-1/4n AdamW

+ First time enable pre-training with only rank 1 space (r=1), using tensor-
wise scaling



@ Performance & Throughput: Pre-training LLaMA 7B

‘ + On-par or even better than AdamW even at 1/16 rank and rank 1!!!
+ First to finish 7B training in 2 weeks (3x faster than Adam)

1000
e AdamW (Mem 26G)
o o Pre-training LLaMA 7B on C4 dataset for 150K
——— APOLLO-Mini (Mem 0.0G) steps with reported perplexity
600 - 1/16 rank and rank 1!!! Optimizer | Memory | 40K | 80K | 120K | 150K
8-bit Adam 13G | 18.09 | 15.47 | 14.83 | 14.61
400 - 8-bit Galore | 4.9G | 1794 | 15.39 | 14.95 | 14.65
APOLLO 1.6G | 1755 | 14.39 | 13.23 | 13.02
200 9 APOLLO-Mini | 0.0G | 18.03 | 14.60 | 13.32 | 13.09
Tokens (B) §2 11051167 197

0 20k 40k 60k 80k 100k 120k 140k
Steps
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Al-Assisted Simulations for Optical Designs

¢+ Optical Al has great potential with customized structures =» novel optical devices
¢+ However, computationally expensive simulations for Maxwell equations, etc.

. Control Signals 6
Light Source J L

Light Field H(8,]) ?

A

=

)“"!/
g38

Can ML models learn the light propagation principles?
— Fast Al-based Maxwell Solver - novel optical device design

29



Complicated PDE for Real-world Device

‘ + ML for PDE has been popular to speed up simulation process
+ But not an easy task for real-world photonic devices

@ (a) Complicated light-matter interaction @ (c) Non-uniform learning complexity

How to enable ML-aided photonic device simulation with high fidelity?

ek

@
=N
|

PYRT WY SN T [ S TR SN SR N PR ST ST S T

0 50 100 150
Wavenumber ,

low freq ==p-high freq

Energy Spectrum
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Our Proposed PACE: New Operator Kernel

¢+ A math-inspired neural operator kernel
»  Better computation and parameter efficiency than Attention as the kernel

vi(r) € RO*C: Kuvg)(r1) = fﬂ k(r1, 7o)vk (r2)dur(2), Vi € Q,
|
+ o h ' Y, h
[F‘re—nc-rm] ""’fnh K(r1,72) ‘/ﬂh K(T1,72) " vp(r2)dug (r2) "dug (r2)"”, Vry € Q

Cross-axis factorized integral kernel

v -8 ~— [ g group
;l el 7
g w5

TJ;H_;L E Rﬂxﬂ
Tran sforme r-style Design A math-inspired neural operator kernel for

approximated 2D integral

Zhu, Hanging, Wenyan Cong, Guojin Chen, Shupeng Ning, Ray Chen, Jiaqgi Gu, and David Z. Pan. "Pace: Pacing operator learning to
accurate optical field simulation for complicated photonic devices.”, NeurlPS 2024 31



Our Proposed PACE: Learning from Rough to Clear

¢+ A math-inspired neural operator kernel + New training recipe

Neural Operator ¥y  Maxwell

Encoder £ Maxwell
: D solutions U

% representation AT

Maxwell
observations A

Cross-stage
—O feature distillation

Stem

\
AT - (67'3 H;, P:va Pz) E(\IIOI (a')’ \I’;) (67-, \1191 (a)) [/(\I’92(€ra \Ilf)l)a ‘I’(G,)*)
Stage I: Leam a rough solution only Stage Il: Learn a fine solution from the

from Maxwell observations rough optical field solution
Zhu, Hanging, Wenyan Cong, Guojin Chen, Shupeng Ning, Ray Chen, Jiaqgi Gu, and David Z. Pan. "Pace: Pacing operator learning to
accurate optical field simulation for complicated photonic devices.”, NeurlPS 2024 32



Main Results

)

‘ ¢+ Benchmarks: subwavelength (etched) MMIs and Metaline

— l%l = = oF E%%

¢+ PACE: A much stronger baseline for photonic simulation
53.8% lower error and 50% fewer parameters

o A A

Benchmarks Model #Params (M) | Train Err (1072) | Test Err (1072) |
UNet [20, 4] 3.88 63.03 65.32
Dil-ResNet [28] 4.17 51.34 51.79
Etched MMI 3x3 Attention-based model [18] 3.75 70.05 69.85
U-NO [2] 4.38 34.22 42.86
Latent-spectral method [36] 4.81 55.07 55.16
FNO-2d [19] 3.99 32.51 38.71
Tensorized FNO-2d [16] 225 35.52 36.61
Factorized FNO-2d [32] 4.02 24.2 32.81
NeurOLight [10] 2.11 15.58 17.21

PACE 1.71 9.51 10.59



Real-time Optlcal Fleld Predlctlon

,’/ Runtlme = (). DDB S. FPS = 120. 5
. — 11.000

e, = 11.000

5.75 pm

e, = 11.000

T =

- ~~y (3) Change size __-- . = 31.73 pm
for device opt.
Runtime = 0.008 s, FPS = 120.5
=g '\ = 1,500 . = 11.000
E |'1|_"I-r4' |
I e = 11.000
-

\, (4) Change light source [, = 31.73 um
as different inputs

weight reconfig.
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Growing Analog/RF IC Demand
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Even Digitals are Analog-Enabled!

D)) )]

=
=y
m

View of some digital designers

Compute Systems are Analog-Enabled Digital

Some A’-"ﬂl:ﬁ(o‘\;'“%‘@' /’5\“\‘7'3:1‘-10{& :’;““’

that

we probably don’t need

Compute
(DIGITAL)

Analog Evolution in Digital
CMOS-Centric Technologies

@ Compute Systems are Analog-Enabled Digital
RFIC Analog and Mixed-Signal (AMS) Circuits are ubiquitous “

Without integrated analog,

Digital Thermal Sensor (DTS) Monitors optimum core performance.
and Power Management Unit  Prevents thermal runaway

Phase-Locked Loop (PLL) High-frequency clocking

$IEEE YL e

Prof. Tsu-Jae Liu’s RFIC 2024 Keynote

capability would resem

Integrated Voltage Regulator  Energy-efficient power delivery

RFIC SPONSORS:

Wireline Transceivers (1/0) Communication to outside die

Compute (Digital)

Data Converters (ADC/DAC) Interface between real-world signals and digital compute
Wireless Communication Dense integration of radios ( WiFi, Bluetooth...)
-éjférg.b|§|/o ESD Protection against triboelectric discharge

Innovations in integrated analog functions have
enabled compute performance scaling

==L |t g |

DIAMOND
QOf‘\'O ‘ : GlobalFoundries
all around you -

RFIC SPONSORS:




AnalogCoder: Analog Circuit Design via LLM

Method Fully Automated ' Auto Fix Errors > Benchmark Open-Source Training-Free Circuit Type
ChipChat [7] X X v v v Digital
ChipGPT [8] X X v X v Digital
VeriGen [9] v X v v X Digital
AutoChip [10] v v X v v Digital
VerilogEval [12] v X v X X Digital
RTLLM [13] v X v v v Digital
RTLfixer [14] v v X v v Digital
RTLCoder [15] v X X v X Digital
ChipNeMo [18] v X X X X Digital’®
BetterV [16] v X X X X Digital
AnalogCoder v v v v v Analog
Analogcoder: Analog circuit design via training-free code generation 47 2025

Y Lai, S Lee, G Chen, S Poddar, M Hu, DZ Pan, P Luo
Proceedings of the AAAI Conference on Artificial Intelligence 39 (1), 379-387

AAAI 2025 Oral (< 5% acceptance rate), already got 47 citations!
Open sourced: https://github.com/laiyao1/AnalogCoder

37



AnalogCoder Design Flow

Circuit Design @l [ x o Wrong Circuit
Task e | @ ) » (Exceeded max attempts)
: Basic Circuit Design Feedback- & .
} i Design Task Prompt Enhanced Flow | | @ Correct Circuit
[ ]PDrCSign J Max Attempts=3
ompt
| (b) Circuit Tool |_| “%
e T T eI R T — : NP
@ : Library J

: ; Wrong
Flow @ Query lRetrzeval l 0 Circuit

X N o (Exceeded max
. © Coripostie 4{ Retrieval }_ Design G Feedback- > attempts)

: Circuit
Crok oo | Dok L2 i il g
: Max Attempts=2 Circuit

(a)




Benchmark Circuits

‘ + We created a set of analog circuits for benchmarking
v Amplifier, Inverter, Current Mirror, Oscillator, Integrator, ...
¢+ Easy/ / Hard

Id | Type | Circuit Description | Id | Type | Circuit Description
1 | Amplifier Common-source amp. with R load 13 | Opamp Common-source op-amp with R loads
2 | Amplifier 3-stage common-source amplifier with R loads 14 | Opamp 2-stage op-amp with active loads
3 | Amplifier Common-drain amp. with R load 15 | Opamp Cascode op-amp with cascode loads
4 | Amplifier Common-gate amp. with R load 16 | Oscillator Wien Bridge oscillator
5 | Amplifier Cascode amp. with R load 17 | Oscillator RC Shift oscillator
6 | Inverter NMOS inverter with R load 18 | Integrator Op-amp integrator
7 | Inverter Logical inverter with NMOS and PMOS 19 | Differentiator ~ Op-amp differentiator
8 | Current Mirror | NMOS constant current source with R load 20 | Adder Op-amp adder
9 | Amplifier Common-source amp. with diode-connected load 21 | Subtractor Op-amp subtractor
10 | Amplifier 2-stage amplifier with Miller compensation C 22 | Schmitt trigger Non-inverting Schmitt trigger
11 | Opamp Op-amp with active current mirror loads 23 | VCO Voltage-Controlled Oscillator
12 | Current Mirror | Cascode current mirror 24 | PLL Phase-Locked Loop
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Leaderboard of LLMs for Analog Design

~J
=

=
co

=
un
1

# of Passed Design Tasks
© N
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PulseRF for RFIC Passive Design

Conventional vs. our PulseRF approach [Chae+, ICCAD24]

Conventional Method @ Manual @ Iterative @ Heuristically-constrained

T(ranpoodlglgy Physical EM .
selection implementation simulator Simulated
> —> metrics
k
)| S = | @A
P Ls  — e
T 1T

Slow simulation restricts the number of
optimization iterations possible

9 Optimization is confined to a limited set of
topology templates

Proposed Inverse Design Method @ Automated @ Fast @ Efficient

PulseRF= 7
EM structure Iayou Physics-augmented
ML model
BO-based a@
design synthesis

Directly Synthesizes Design |

Target
metrics

Zpy Ly M

@ Physics-augmented ML model for fast
design evaluation

@ Bayesian optimization-based inverse design

@ Super-human, non-intuitive designs



1st NSTC Jump Start R&D Program: AIDRFIC

NatcastE=:

¢ Active: leverage analog DA
¢ Passive: PulseRF++
¢ Just scratched the surface!

¢ 75+ team competed =>
3 winning teams

¢ UT Austin team “GENIE-RFIC:
Generative ENgine for Intelligent
and Expedited RFIC Design”

NATCAST ANNOUNCES ANTICIPATED
AWARDEES, APPROXIMATELY $30 MILLION
INVESTMENT THROUGH FIRST NSTC R&D
JUMP START PROJECT

October 18, 2024

AIDRFIC awards will propel Al-driven RFIC design innovation, enhance U.S. global competitiveness in
semiconductor R&D

WASHINGTON, D.C., October 18, 2024 - Natcast, the purpose-built, non-profit entity designated by the
Department of Commerce to operate the National Semiconductor Technology Center (NSTC) established
by the CHIPS and Science Act of the U.S. government, today announced three anticipated awardees and
approximately $30 million in funding through the Artificial Intelligence Driven RF Integrated Circuit
Design Enablement (AIDRFIC) program, the first NSTC R&D Jump Start project. The anticipated awards
will revolutionize RFIC design by integrating artificial intelligence (Al) and machine learning (ML)
technologies, addressing one of the U.S. semiconductor industry’s most pressing design productivity
challenges and strengthening U.S. leadership in broadband, 5G, and next-generation radio-frequency
hardware.

Natcast has selected three anticipatggProposal teams for award. These teams are led by Keysig
Technologies, Princeton University,

experts from academia and industrfProjected awards will range from $7.5 million to $10 million eg

d the University of Texas at Austin, respectively, and comprise Wp

with projects expected to commence 025 and last 30 months. The success of these proje
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Conclusion

¢+ Traditional electronics scaling cannot race with Al Model scaling

¢ Emerging devices such as photonics for ML hardware

+ Break the tradition that ML first and then hardware/system

¢ Co-design/hardware-aware Al can unlock huge efficiency potential

+ Hardware/chip design itself, e.g., modeling and LLM aided design
¢ But still far away from super-human GenAl “all at once!” for chip design
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