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AI Model Scaling Hits Hardware Wall

⧫ AI compute/model scaling doubles every 5 months 

⧫ Significantly outpace Moore’s law and Memory scaling
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Compute scaling
Memory Capacity scaling



AI Model and Hardware Co-Design

⧫ Traditionally, fixed ML algorithms → then systems optimization

⧫ Invent ML algorithms that are hardware-aware and ML algorithm, 

system, hardware co-design
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Hardware-aware AI Algorithm

In This Talk: AI-Hardware Synergy

Emerging Light (Photonics) for AI

AI/GenAI for IC Design



Hardware-aware AI Algorithm

In This Talk: AI-Hardware Synergy
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Emerging Light (Photonics) for AI

AI/GenAI for IC Design



Electrical Computing vs Photonic Computing

6Source: https://www.lightelligence.ai/

High speed

Electronic 

Matrix Unit

Delay 100 𝑛𝑠 ~ 1 𝜇𝑠
A few hundred clock cycles

Photonic 

Matrix Unit

Delay ≪ 1 𝑛𝑠

Computing as light propagate

Massive parallelism

Light propagate in parallel

Magnitude

Phase

Metal wires

Waveguides

High energy efficiency

Passive circuits consumes 

near zero static power

Electronic 

Matrix Unit



General Photonic AI Computing Paradigm
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Electrical Weight 

Encoding

Photonic Tensor 

Core

Optical 

Inputs

Optical 

Outputs

MZI Mesh
[Nat. Photon’17] [Science’23]

PCM Crossbar
[Nature’21]

MRR Bank
[SciRep’17]

Representative Photonic Tensor Cores

⧫ Encode weight matrix into photonic circuit transformation

⧫ Efficient one-shot 𝑾𝑥 by forwarding optical signal



Move to Support GenAI Workloads: Transformers! 

⧫ Prior Optic AI → Designed for CNN (fixed weights and positive Inputs)

⧫ Dynamic Matrix Multiplication

› Real-time operand programming

⧫ Full-range Operands
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𝑿 𝒀

𝒁

Dynamical and full-range

activations
Attention
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OutputInput

Electrical Weight Encoding

Non-negative only operands 

in incoherent PTC (light 

intensity modulation) 

High operand mapping Cost

(time-consuming 

decomposition step)

MZI

Arrays

SVD Decomp.

Phase Decomp.

Electrical Weight Encoding

Slow device programming

(adoption of low-loss, compact 

weight modulators)

PTC

runs at ~5-10 GHz

Prior PTCs as Plug-in-and-Play Solutions? No! 

Inefficient for 

Full-range MatMul
Stall due to frequent operand 

switching in Dynamic MatMul

Photonic AI accelerators as a plug-in-and-play solution? 

Answer is No! They are not efficient! 



Our Lightening-Transformer, HPCA’24
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⧫ The first versatile photonic accelerator for universal AI models

⧫ Deliver 100-1000x performance gain than electronics on Transformers

⧫ First open-sourced arch-level simulator for optical AI accelerator

Zhu, Hanqing, Jiaqi Gu, Hanrui Wang, Zixuan Jiang, Zhekai Zhang, Rongxing Tang, Chenghao Feng, Song Han, Ray T. Chen, and David Z. 

Pan. "Lightening-transformer: A dynamically-operated optically-interconnected photonic transformer accelerator.". HPCA 2024. 

Specialized/CNN-suitable 

Optical Hardware ⋯

[Nature’21] [Nature’22][Nature’21]

[Nat. Photon.’17]

GPT

Lightening-

Transformer

ResNet ViT

VGG

Any GEMM-

based workload

[Nature’25] aims to address



A Novel Versatile Photonic GEMM Primitive

⧫ Compute via direct light-light interaction
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High-speed encoded

& Full-range

optical inputs

Fully-passive internal 

optical circuit

Dynamic dot-product engine: DDot



A Novel Versatile Photonic GEMM Primitive

⧫ Compute via direct light-light interaction → Dynamical modulation cost concern 

⧫ Crossbar-style photonic tensor core via optical broadcast

⧫ Maximized intra-core operand sharing for both X and Y (memristor crossbar: W(X) only)

12

High-speed encoded

& Full-range

optical inputs

Fully-passive internal 

optical circuit

Dynamic dot-product engine: DDot Dynamic photonic tensor core: DDTC



Unique Arch-level Opt. in Optical Accelerator
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Proposed global modulation unit with 

optical inter-core broadcast

⧫ Optical AI efficiency bottleneck: Data movement & signal conversion (ADC)

⧫ Our solution:

› Share signals with photonic interconnects to reduce data movement cost

› Explore data locality with a time integrator in analog domain to reduce signal conversion cost

Proposed accumulation in analog 

domain cross time axis



Ours vs. SOTA Digitals

14

⧫ 𝟏𝟎𝟎 − 𝟏𝟎𝟎𝟎 × lower energy-delay product than CPU, GPU, FPGA, Edge TPU

› >100x latency speedup

⧫ First to show the huge potential of optics for adv. ML workloads

Chip taped out

(Under testing)



More for Our Photonics AI Journey

Area Efficiency Adaptability Robustness Versatility

Butterfly-style ONN

[.    ASP-DAC’20 BPA, TCAD’20, ACS 
Photonics’22] (Tape-out)

Robust ONN

[ICCAD’19, DATE’20]

SqueezeLight, O2NN, 

MOON [DATE’21] (Tape-
out) [DATE’21][CLEO’23]

Photonic 

Computing 

Hardware 

Design

Circuit-Model 

Co-Optimization

Deployment & 

Application

Photonic AI 

Design Stack

Model Compression

[NeurIPS’22 MLSys, Spotlight]

Optical RNN

[CLEO’20] 
(Tape-out)

PCM-ONN 

[ASP-DAC’22, TCAD’22]

ADEPT: Auto Design

[DAC’22] (Best-in-Track)

Photonics + MTJ

[ICCAD’22]

NeurOLight

[NeurIPS’22, Spotlight]

Publications: >30 in CAD, ML, Arch, Photonics Communities

(Hardware/software design + Chip tape-out)

15

Mem-Efficient

[ICCV’21]

FLOPS; MixedTrain: Zeroth-order On-chip Training

[     DAC’20, BPC] [     NSF Workshop BPA] [AAAI’21]

L2ight: Scalable On-chip Training [NeurIPS’21]

DOTA: First Photonic 

Transformer 
Accelerator [HPCA’24]

Circulant ONN

[ OPTICA’25] (Tape-out)



Hardware-aware AI Algorithm

In This Talk: AI-Hardware Synergy
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Emerging Light (Photonics) for AI

AI/GenAI for IC Design



Training of LLMs Takes a Lot of Memory!

17

⧫ Pre-training LLaMA-7B model (BF16, batch size of 1)

› Trainable Parameters (Weights): 14GB

› Gradients: 14GB

› Activations: 2GB

58GB

Gradient

Weights

Activations

Optimizer 
States



Training of LLMs Takes a Lot of Memory!
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⧫ Pre-training LLaMA-7B model (BF16, batch size of 1)

› Trainable Parameters: 14GB

› Gradients: 14GB

› Activations: 2GB

⧫ Default optimizer→ AdamW

› Store first and second order estimates

› Twice of the model weights: 28GB 58GB

Gradient

Weights

Optimizer 
States

Activations



Existing Solution – System-level
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Exemplar techniques: 
Memory offloading, optimizer 

states parallelism

🥲 Trade time for less memory

58GB

Gradient

Weights

Optimizer 
States

Activations



Existing Solution – Algorithm-level
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Exemplar techniques: 
Low-rank:

GaLore, Low-rank Adaption(LoRA)
Quantization:

8-bit optimizer, Low-precision Training
Optimizer Redundancy:

Adam-mini 58GB

Gradient

Weights

Optimizer 
States

Activations

🥲 Fine-tuning only; Still memory-
intensive; Costly SVD



Our Proposed APOLLO, MLSys’25
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⧫ New-record memory-efficiency, low-overhead, powerful as Adam(W)

› Train LLaMA-7B model with <12GB memory (cf. 58GB)!!! You can use a NVidia Titan to train 7B!

Zhu, H., Zhang, Z., Cong, W., Liu, X., Park, S., Chandra, V., Long, B., Pan, D.Z., Wang, 

Z. and Lee, J., 2024. Apollo: Sgd-like memory, adamw-level performance. MLSys’25 

Outstanding Paper Honorable Mention Award

LLaMA-7BC4 Dataset NVidia Titan

Gradient

Weights

Activations

APOLLO

More data

Larger Model

Low-end GPU



Rethink AdamW in a Structured Version

Adam(W)

Reformulated

Adam(W)

Structured 

Adam(W)

Theoretical 

equivalent 

reformulation 

Structuralize S =
෨𝐺

𝐺
into a channel-

wise/tensor-wise Empirical validation 

on Training Loss



Wait ! No memory benefits for doing so!  

𝑮𝒕

Adam(W) updates 1st order and 2nd order 
moments

For any weight update 𝑾𝒕 at iteration t

𝑴𝒕 𝑽𝒕

Obtain gradient update ෩𝑮𝒕

𝑺𝒕

𝑾𝒕

෩𝑮𝒕 𝑮𝒕 Diag(   )

Intermediate

Stored

Structured Learning 

Rate Update



Approximate Structured Learning Rate in Low Rank Space

Get the compressed gradient matrix 𝑹𝒕

𝑮𝒕

Adam(W) updates 1st order and 2nd order 
moments

For any weight update 𝑾𝒕 at iteration t 𝑾𝒕

Obtain gradient update ෩𝑮𝒕 ෩𝑮𝒕 𝑮𝒕

𝑮𝒕𝑷𝒕𝑹𝒕

𝑴𝒕
𝑹 𝑽𝒕

𝑹 𝑹𝒕

Diag(   )

Intermediate

Stored

Structured Learning 

Rate Update



APOLLO: Memory benefit 𝟐𝒎𝒏 → 𝟐𝒎𝒓 + 𝟏

𝑮𝒕𝑾𝒕

෩𝑮𝒕 𝑮𝒕

𝑮𝒕𝑷𝒕𝑹𝒕

𝑴𝒕
𝑹 𝑽𝒕

𝑹 𝑹𝒕

Diag(   )

Intermediate

Stored

Structured Learning 

Rate Update

Get the compressed gradient matrix 𝑹𝒕

For any weight update 𝑾𝒕 at iteration tMemory Cost

𝑾𝒕
𝑴𝒕

𝑹
𝑽𝒕
𝑹

𝒎𝒏 𝟐𝒎𝒓

𝑾𝒕 𝑴𝒕 𝑽𝒕

𝒎𝒏 𝟐𝒎𝒏

1 

𝑷𝒕



APOLLO: Many Firsts in Efficient LLM Training

⧫ First time enable pre-training with an SVD-free approach

› Random projection works with a theoretical bound!

› An elegant factor to compensate error introduced by the low rank 𝒓

⧫ First time enable pre-training with only rank 1 space (r=1), using tensor-

wise scaling



Performance & Throughput: Pre-training LLaMA 7B

⧫ On-par or even better than AdamW even at 1/16 rank and rank 1!!!

⧫ First to finish 7B training in 2 weeks (3x faster than Adam)

1/16 rank and rank 1!!!



Hardware-aware AI Algorithm

In This Talk: AI-Hardware Synergy
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Emerging Light (Photonics) for AI

AI/GenAI for IC Design



Light Source 𝐽
Control Signals 𝜃

Can ML models learn the light propagation principles?

→ Fast AI-based Maxwell Solver → novel optical device design

Light Field 𝐻(𝜃, 𝐽) ?

⧫ Optical AI has great potential with customized structures ➔ novel optical devices 

⧫ However, computationally expensive simulations for Maxwell equations, etc. 

AI-Assisted Simulations for Optical Designs
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Complicated PDE for Real-world Device

⧫ ML for PDE has been popular to speed up simulation process

⧫ But not an easy task for real-world photonic devices

30

How to enable ML-aided photonic device simulation with high fidelity? 



Our Proposed PACE: New Operator Kernel

⧫ A math-inspired neural operator kernel

› Better computation and parameter efficiency than Attention as the kernel
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Zhu, Hanqing, Wenyan Cong, Guojin Chen, Shupeng Ning, Ray Chen, Jiaqi Gu, and David Z. Pan. "Pace: Pacing operator learning to 

accurate optical field simulation for complicated photonic devices.”, NeurIPS 2024

A math-inspired neural operator kernel for 

approximated 2D integral  
Transformer-style Design



Our Proposed PACE: Learning from Rough to Clear

⧫ A math-inspired neural operator kernel + New training recipe
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Zhu, Hanqing, Wenyan Cong, Guojin Chen, Shupeng Ning, Ray Chen, Jiaqi Gu, and David Z. Pan. "Pace: Pacing operator learning to 

accurate optical field simulation for complicated photonic devices.”, NeurIPS 2024

Encoder ℰ Maxwell 

solutions 𝒰

Maxwell 

representation 𝒜†
Maxwell 

observations𝒜

Neural Operator 𝛹𝜃

Stage I: Learn a rough solution only 

from Maxwell observations 
Stage II: Learn a fine solution from the 

rough optical field solution



Main Results

⧫ Benchmarks: subwavelength (etched) MMIs and Metaline

⧫ PACE: A much stronger baseline for photonic simulation
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53.8% lower error and 50% fewer parameters



Real-time Optical Field Prediction
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(1) Change index for 

weight reconfig.
(2) Change wavelength for spectrum sweeping 

(3) Change size 

for device opt.

(4) Change light source 

as different inputs 



Growing Analog/RF IC Demand
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Even Digitals are Analog-Enabled!
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Prof. Tsu-Jae Liu’s RFIC 2024 Keynote
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AnalogCoder: Analog Circuit Design via LLM

AAAI 2025 Oral (< 5% acceptance rate), already got 47 citations!

Open sourced:  https://github.com/laiyao1/AnalogCoder



AnalogCoder Design Flow
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Benchmark Circuits
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⧫ We created a set of analog circuits for benchmarking

⧫ Amplifier, Inverter, Current Mirror, Oscillator, Integrator, …

⧫ Easy / Medium / Hard



Leaderboard of LLMs for Analog Design
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Slow simulation restricts the number of 

optimization iterations possible

Optimization is confined to a limited set of 

topology templates

PulseRF for RFIC Passive Design

⧫ Conventional vs. our PulseRF approach [Chae+, ICCAD’24]

Physics-augmented ML model for fast 

design evaluation

Bayesian optimization-based inverse design

Super-human, non-intuitive designs



1st NSTC Jump Start R&D Program: AIDRFIC

⧫ Active: leverage analog DA

⧫ Passive: PulseRF++

⧫ Just scratched the surface!

⧫ 75+ team competed =>              

3 winning teams

⧫ UT Austin team “GENIE-RFIC: 

Generative ENgine for Intelligent 

and Expedited RFIC Design”
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Conclusion

⧫ Traditional electronics scaling cannot race with AI Model scaling

⧫ Emerging devices such as photonics for ML hardware 

⧫ Break the tradition that ML first and then hardware/system

⧫ Co-design/hardware-aware AI can unlock huge efficiency potential

⧫ Hardware/chip design itself, e.g., modeling and LLM aided design
⧫ But still far away from super-human GenAI “all at once!” for chip design
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